
Jackson Notes 3 2020

1 Method of images
The method of images is a method that allows us to solve certain potential problems as

well as obtaining a Green’s function for certain spaces. Recall that the Green’s function
satisfies the equation ("formal" notes eqn 3):

∇32G (�x, �x3) = −4πδ (�x− �x3) (1)
subject to the boundary conditions

GD = 0 on S (2)
or

∂G

∂n
= C on S (3)

and thus the solution is of the form

G (�x, �x3) =
1

|�x− �x3| + ψ (�x, �x3) (4)

where
∇32ψ (�x, �x3) = 0 in V (5)

Thus the Green’s function is 4πε0 times the potential at �x due to a unit point charge at �x3
in the volume V plus an additional term, with no sources in V, that fixes up the boundary
conditions, that is, a term due to sources outside V. Thus we can make progress in finding the
Dirichlet Green’s function by finding the potential due to a point charge in V with grounded
boundaries.

1.1 Plane boundary

Suppose the volume of interest is the half-space z > 0. A point charge q is placed at a
distance d from the x− y−plane, which is a conducting boundary. What is the potential for
z > 0?
First, the conducting plane must be at a constant potential, which we may take to be zero.

(If the potential is V0, we can just add V0 to our solution at the end.) Then we may place
an image charge −q at distance d from the boundary, but on the opposite side. Then the
potential due to these two charges everywhere on the boundary z = 0 is zero, since every
point on the boundary is equidistant from the two charges. Since the image charge we added
is outside our volume, it does not contribute to the value of ∇2Φ in V. Thus, putting the
z−axis through q, the solution is

Φ (�x) =
1

4πε0

�
q

|�x− dẑ| −
q

|�x+ dẑ|
�

Properties of this solution are explored in Jackson problem 2.1. Note that the image charge
represents the charge density drawn onto the plane through the ground wire.
To obtain the Green’s function for the half-space, we simply set q = 1, dẑ = �x3, and
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multiply by 4πε0. Then
G (�x, �x3) =

1

|�x− �x3| −
1

|�x− �x | (6)

where
�x33 = (x3, y3,−z3)

is the position vector of the image point. This expression shows clearly that the physical
dimensions of G are [1/length].
This Green’s function (6) is explicitly in the form (4), but it is not very convenient to

use. For example, suppose the problem of interest has potential V0 within a circle of radius
a on the plane z = 0, with the rest of the plane grounded. (See Jackson problem 2.7.)
The outward normal from the volume on the plane is n̂ = −ẑ. So we would need first to
compute ("formal" notes equation 7)
∂G

∂n3

����
z =0

= n̂3 · �∇3G
���
z =0

= − ẑ · �∇3G
���
z =0

= −∂G
∂z3

����
z =0

= −

 (z − z3)k
(x− x3)2 + (y − y3)2 + (z − z3)2

l3/2 + z + z3k
(x− x3)2 + (y − y3)2 + (z + z3)2

l3/2

�������
z =0

= − 2z

|�x− �x3|3
�����
z =0

and then evaluate

Φ (x̃) =
V0
4π

]
circle

2z

|�x− �x3|3
�����
z =0

dx3dy3

=
V0z

2π

]
circle

1�
r2 + r32 − 2rr3 cos �φ− φ3

�
+ z2

�3/2 r3dr3dφ3
where r,φ are polar coordinates in the x− y plane. This is ugly. (We encountered a similar
integral in the bar magnet example, but that was only a 1/2 power. Later on we will identify
some methods for doing this integral, but we will also find more convenient expressions for
G.)

1.2 Images in a sphere

Now let the conducting boundary be a sphere of radius a and suppose we have a point charge
q at a distance d from the center of the sphere, where d > a. We want to find the potential
outside the sphere.
Learning from our experience above, we conjecture that we can place an image charge

inside the sphere (and thus outside our volume V ) and form the potential in V as the sum of
the potential due to the two charges. The boundary condition is that Φ (�x) = 0 everywhere
on the surface of the sphere (r = a). The system has azimuthal symmetry about the line
from the center of the sphere to the charge q. Rotate the system about this line and nothing
changes. Thus the image charge q3 must lie on this line at a distance d3 from the center.
Then we have two unknowns in our potential: q3 and d3, and we need pick only two points
on the sphere to solve for the two unknowns. The most convenient two points lie on the
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ends of the diameter through the image charge, as shown (P and Q in the diagram).

The potentials are

ΦP =
1

4πε0

�
q

d+ a
+

q3

d3 + a

�
= 0 (7)

and
ΦQ =

1

4πε0

�
q

d− a +
q3

a− d3
�
= 0 (8)

Then from equation (7)
q (d3 + a) + q3 (d+ a) = 0

and from (8)
q (a− d3) + q3 (d− a) = 0

Adding these two relations, we can eliminate d3 to get

2qa+ 2q3d = 0⇒ q3 = −q a
d

(9)

This result has the nice property that the image charge is negative if q is positive, as we
found in the planar case. Once again the image charge represents the charge drawn onto the
surface of the sphere through the ground wire.
Now we subtract the two relations to obtain an expression for d3 :

2qd3 + 2q3a = 0

d3 = −aq
3

q
= −a

�
−a
d

�
=
a2

d
(10)

The image charge is inside the sphere if d > a, as we need. Conversely, if d < a, the image
charge is outside the sphere. (You are asked to confirm this result in Problem 2.2.)
We can perform two checks on this result. First let’s find the potential at an arbitrary

point on the sphere. We put the polar axis through q, so that the potential is independent of
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φ. Then

4πε0Φ (a, θ) =
q

R
+
q3

R3

=
q√

d2 + a2 − 2ad cos θ −
qa/dt

(d3)2 + a2 − 2ad3 cos θ

=
q

d

 1t
1 + a2

d2 − 2ad cos θ
− at

(a2/d)2 + a2 − 2 (a3/d) cos θ

 = 0

for all θ, as expected.
Second, let’s check that we get back the result from §1.1 as a →∞ (plane boundary).

We have to be a bit careful here, because if we immediately let a → ∞, the point from
which we are measuring our distances moves off infinitely far to the left, and we will learn
nothing. So first we write our results in terms of distance from the surface of the sphere.
The charge q is a distance d− a = h from the surface, and then

q3 = −q a

a+ h
= − q

1 + h/a
→−q as a→∞

as required. The distance of the image from the surface is

h3 = a− d3 = a− a2

a+ h
=

ah

a+ h
=

h

1 + h/a
→ h as a→∞

and this is the second required result.
Finally we can write the Dirichlet Green’s function for the region outside a sphere of

radius a by setting q = 1 and multiplying by 4πε0 :

GD (�x, �x
3) =

1

|�x− �x3| −
a

r3
1

|�x− �x33| (11)

where �x33 is the position vector of the image point. (This is Jackson eqn 2.17.) Again,while
correct, this is pretty ugly and will be difficult to use.

1.3 Images in a cylinder

The basic ideas and methods are the same as we have used in the plane and sphere cases.
See Jackson problem 2.11.

1.4 Use of images to solve problems

Jackson P 2.10 asks us to compute the potential inside a parallel-plate capacitor with a small
hemispherical boss on one plate. We model the system by putting a point charge q at a very
large distance d from the plane. A field line diagram shows us that the field will be close to
uniform in a region d  r  a. Then we can use the image system shown to model the
capacitor, since the image system puts potential zero on the lower plate. (q and −q, q3 and
−q3 form pairs that make the potential on the plane zero; q and q3, −q and −q3 form pairs
that make the potential on the sphere zero.) Then we can show that as d →∞ we obtain a
uniform field at large distance from the lower plate, and we set that uniform field equal to
the given value of E0, thus determining the necessary charge q.
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Setup: From §1.2 eqns (9) and (10), the image charge q3 = −adq and its distance from the
plane is d3 = a2

d . The potential due to the four charges (one real charge and three images)
is

Φ (r, θ) = kq

+
1/
√
r2 + d2 − 2rd cos θ − 1/√r2 + d2 + 2rd cos θ

− �ad�/tr2 + a4

d2 − 2r a
2

d cos θ+
�
a
d

�
/
t
r2 + a4

d2 + 2r
a2

d cos θ

,
(12)

To see why this works, look at the potential for d r a. We drop terms in (a/d)2 to get

Φ (r, θ) * kq
d

 1/
t

r2

d2 + 1− 2 rd cos θ − 1/
t

r2

d2 + 1+ 2
r
d cos θ

− �ar � /t1− 2a2dr cos θ + �ar �/t1 + 2a2rd cos θ


Next expand the square roots, dropping terms in (r/d)2 and (a/r)× (a/d).
Φ (r, θ) * kq

d

q
1 +

r

d
cos θ −

�
1− r

d
cos θ

�
− a
r
+
a

r

r
=

kq

d
2
r

d
cos θ =

2kq

d2
z to first order in small quantities

This corresponds to the given uniform field provided that E0 = 2kq/d2, or, if we choose
q = E0d

2/2k. (13)

Solve: (a) To find the surface charge densities, begin with the field components. From
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(12), we have

∂Φ

∂r
= kq

+
− r − d cos θ
(r2 + d2 − 2rd cos θ)3/2

+
r + d cos θ

(r2 + d2 + 2rd cos θ)3/2

+
a
�
r − a2

d cos θ
�

d
�
r2 + a4

d2 − 2r a
2

d cos θ
�3/2 − a

�
r + a2

d cos θ
�

d
�
r2 + a4

d2 + 2r
a2

d cos θ
�3/2


and at r = a

Er = kq

+
a− d cos θ

(a2 + d2 − 2ad cos θ)3/2
− a+ d cos θ

(a2 + d2 + 2ad cos θ)3/2

−
a
�
a− a2

d cos θ
�

d
�
a2 + a4

d2 − 2aa
2

d cos θ
�3/2 + a

�
a+ a2

d cos θ
�

d
�
a2 + a4

d2 + 2a
a2

d cos θ
�3/2


= kq

+
a− d cos θ

(a2 + d2 − 2ad cos θ)3/2
− a+ d cos θ

(a2 + d2 + 2ad cos θ)3/2

− da2 (d− a cos θ)
a3 (d2 + a2 − 2ad cos θ)3/2

+
da2 (d+ a cos θ)

a3 (d2 + a2 + 2ad cos θ)3/2

,

= kq

%
a− d cos θ − d

a (d− a cos θ)
(a2 + d2 − 2ad cos θ)3/2

− a+ d cos θ −
d
a (d+ a cos θ)

(a2 + d2 + 2ad cos θ)3/2

&

=
qa

4πε0

�
1− d

2

a2

�%
1

(a2 + d2 − 2ad cos θ)3/2
− 1

(a2 + d2 + 2ad cos θ)3/2

&

Then the charge density is (notes 1 eqn 11 with �E2 = 0 inside the boss and n̂ = r̂, see
diagram):

σ (θ) = ε0Er =
qa

4π

�
1− d

2

a2

�%
1

(a2 + d2 − 2ad cos θ)3/2
− 1

(a2 + d2 + 2ad cos θ)3/2

&
Analysis: Notice that σ is zero in the corners at θ = π/2, as expected. Also since
1 ≥ cos θ ≥ 0 on the boss and d > a, the charge density is negative on the boss if q is
positive, as expected.
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Solve:The total charge on the boss is (with µ = cos θ)

Qboss =

]
σdA = 2π

] π/2

0

σ (θ)a2 sin θ dθ

=
2π

4π
qa3

�
1− d

2

a2

�] 1

0

#
1

(a2 + d2 − 2aµd)3/2
− 1

(a2 + d2 + 2aµd)3/2

$
dµ

=
qa3

2

�
1− d

2

a2

� −1
2ad

#
−2

(a2 + d2 − 2daµ)1/2
− 2

(a2 + d2 + 2daµ)
1/2

$�����
1

0

Qboss =
q

2

�
1− d

2

a2

�
a2

d

#
1

(a2 + d2 − 2ad)1/2
+

1

(a2 + d2 + 2ad)1/2
− 2√

a2 + d2

$

= −q
2

�
d2 − a2�
d

�
1

d− a +
1

a+ d
− 2√

a2 + d2

�
Qboss = −q

�
1− d2 − a2

d
√
a2 + d2

�
which is Jackson’s result.

Analysis: As d→∞ for fixed q, Qboss → 0. Is this what you would have expected? The
induced charge also goes to zero as a→ 0, .as the boss disappears in this case. |Qboss| < q.
A field line diagram shows why this must be the case: not every field line leaving the point
charge reaches the boss.
Solve: The charge density on the plane is

σ (ρ) = ε0Ez = −ε0 ∂Φ

∂z

����
z=0

Here it is more convenient to express the potential in cylindrical coordinates with
z = r cos θ :

Φ (ρ, z) = kq

+
1s

z2 + ρ2 + d2 − 2zd −
1s

z2 + ρ2 + d2 + 2zd

− a

d
t
z2 + ρ2 + a4

d2 − 2z a
2

d

+
a

d
t
z2 + ρ2 + a4

d2 + 2z
a2

d

 (14)
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Thus

σ (ρ) = −ε0kq
%

− (z − d)
(z2 + ρ2 + d2 − 2zd)3/2

− − (z + d)
(z2 + ρ2 + d2 + 2zd)3/2

+
a
�
z − a2/d�

d
�
z2 + ρ2 + a4

d2 − 2z a
2

d

�3/2 − a
�
z + a2/d

�
d
�
z2 + ρ2 + a4

d2 + 2z
a2

d

�3/2
������
z=0

= − qd
2π

 1

(ρ2 + d2)3/2
− a3

d3
�
ρ2 + a4

d2

�3/2


where the second term is negligible if d a. In this case we get back the result of problem
2.1(a).
The total charge on the plane is:

Qplane = − qd
2π
2π

] ∞
a

 1

(ρ2 + d2)3/2
− a3

d3
�
ρ2 + a4

d2

�3/2
 ρ dρ

= −qd
2

 −2
(ρ2 + d2)1/2

− a3 (−2)
d3
�
ρ2 + a4

d2

�1/2
������
∞

a

= −qd
 1

(a2 + d2)1/2
− a3

d3
�
a2 + a4

d2

�1/2


= −q
d

d2 − a2√
d2 + a2

Analysis: Qplane → −q as a → 0 (flat plate) or d → ∞. The total induced charge on the
conducting surface is:

Qboss +Qplane = −q
�
1− d2 − a2

d
√
a2 + d2

�
− q1

d

d2 − a2√
d2 + a2

= −q
which is the sum of the image charges, as expected.
Solve: Now let’s put in the value for q that gets us to the capacitor-plus-boss system (eqn

13): q = E0d2/2k. Then, for d a, the charge on the boss is:

Qboss = −q
#
1− 1− a2/d2s

a2/d2 + 1

$
* −E0

2k
d2
�
1−

�
1− a

2

d2

��
1− 1

2

a2

d2

�
+O

�a
d

�4�
= −E0

2k
d2
�
3

2

a2

d2

�
= −3

4

E0
k
a2 = −3πε0E0a2

Analysis: This is Jackson’s answer in (b). Notice that d disappears in the limit d →∞, as
required.
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Solve: The charge densities in the capacitor system are:

σ (θ) = ε0E0
a

2

�
1− d

2

a2

�#
d2

(a2 + d2 − 2ad cos θ)3/2
− d2

(a2 + d2 + 2ad cos θ)3/2

$

= ε0E0
a

2d

�
1− d

2

a2

�#
1

(a2/d2 + 1− 2a/d cos θ)3/2
− 1

(a2/d2 + 1+ 2a/d cos θ)3/2

$

* ε0E0
a

2d

�
−d

2

a2

��
1 + 3

a

d
cos θ −

�
1− 3a

d
cos θ

�
+ · · ·

�
= ε0E0

a

2d

�
−d

2

a2

��
6
a

d
cos θ+O

�a
d

�3�
→−3ε0E0 cos θ as d→∞

on the boss, and on the plane

σ (ρ) = −E0d
3

4πk

 1

(ρ2 + d2)3/2
− a3

d3
�
ρ2 + a4

d2

�3/2


= − E0
4πk

1− 3ρ2
2d2
− a3

ρ3
�
1 + a4

d2ρ2

�3/2


= − E0
4πk

�
1− 3ρ

2

2d2
− a

3

ρ3

�
1− 3

2

a4

d2ρ2

��
→ −ε0E0

�
1− a

3

ρ3

�
as d→∞

Analysis: Note that the charge density is zero where the boss meets the plate (ρ = a,
θ = π/2), as expected near a sharp “hole” in the conductor. Also σ → −ε0E0 as ρ →∞,
the expected result for a flat plate with a uniform field above.
The plot shows σ/ε0E0 versus ρ/a for ρ > a and versus 2θ/π for 0 < θ < π/2

0 1 2 3 4 5

-3

-2

-1

0

rho/a

s/s0
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Solve: The potential (14) is

Φ (ρ, z) =
kq

d

 1t
1 +

�
z
d

�2
+
�
ρ
d

�2 − 2 zd −
1t

1 +
�
z
d

�2
+
�
ρ
d

�2
+ 2 zd

− a

d
t�

z
d

�2
+
�
ρ
d

�2
+ a4

d4 − 2 zd a
2

d2

+
a

d
t�

z
d

�2
+
�
ρ
d

�2
+ a4

d4 + 2
z
d
a2

d2


* E0d

2

+
1 +

z

d
−
k
1− z

d

l
− as

z2 + ρ2
2
z

d

a2

z2 + ρ2

,

* E0z

#
1− a3

(z2 + ρ2)3/2

$
as d→∞

Analysis: This function is plotted below. All distances are scaled by a. (Oops- the vertical
axis should be labelled z/a.)

Values of Φ/E0a are: black 0.2, red 0.5, green 1, purple 2. The surfaces flatten out as
distance from the boss increases. Aagin this is the expected result.

Φ → E0z as ρ/a→∞
�E → −E0ẑ

as expected.
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