Physics 705- Notes batch 2

1 Relativistic E\&M

Now we want to discover the set of tensors and the covariant relations that govern E\&M.

We begin with the current 4 -vector which is:

$$
\begin{equation*}
\mathbf{J}=(c \rho, \vec{j}) \tag{1}
\end{equation*}
$$

Note that each component is dimensionally equivalent. The charge conservation law is

$$
\begin{equation*}
\frac{\partial J^{\mu}}{\partial x^{\mu}}=0=\frac{\partial c \rho}{\partial c t}+\vec{\nabla} \cdot \vec{j} \tag{2}
\end{equation*}
$$

where the term on the left is the 4 -divergence of the 4 -vector \mathbf{J}.
Next we conjecture the the 4 -potential is given by

$$
\begin{equation*}
\mathbf{A}=(\phi, \vec{A}) \tag{3}
\end{equation*}
$$

We find that the Lorentz gauge condition is obtained by setting the 4-divergence to zero:

$$
\begin{equation*}
\frac{\partial A^{\mu}}{\partial x^{\mu}}=0=\frac{\partial \phi}{\partial c t}+\vec{\nabla} \cdot \vec{A} \tag{4}
\end{equation*}
$$

We obtain the wave equation from the wave operator

$$
\square^{2}=\partial^{\mu} \partial_{\mu}=\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}-\nabla^{2}
$$

Then

$$
\begin{align*}
\square^{2} \mathbf{A} & =\frac{4 \pi}{c} \mathbf{J} \\
\partial^{\mu} \partial_{\mu} A^{\alpha} & =\frac{4 \pi}{c} J^{\alpha} \tag{5}
\end{align*}
$$

This gives us both of the relations we've seen before:

$$
\begin{aligned}
\alpha & =0: & & \frac{1}{c^{2}} \frac{\partial^{2} \phi}{\partial t^{2}}-\nabla^{2} \phi=4 \pi \rho \\
\alpha & =i: & & \frac{1}{c^{2}} \frac{\partial^{2} \vec{A}}{\partial t^{2}}-\nabla^{2} \vec{A}=\frac{4 \pi}{c} \vec{j}
\end{aligned}
$$

The potential transforms with the Lorentz transformation according to the usual rule for vectors. Note particularly that the charge density is NOT a scalar!

Now for the fields. First note the relations between the fields and the potentials:

$$
\vec{B}=\vec{\nabla} \times \vec{A} ; \quad \vec{E}=-\frac{1}{c} \frac{\partial \vec{A}}{\partial t}-\vec{\nabla} \phi
$$

We know that curls are usually associated with antisymmetric tensors, so we define the field tensor

$$
\begin{equation*}
F^{\alpha \beta}=\partial^{\alpha} A^{\beta}-\partial^{\beta} A^{\alpha} \tag{6}
\end{equation*}
$$

This tensor is antisymmetric, so it has zeros along the diagonal. Recall that the gradient form has components

$$
\partial_{\alpha}=\left(\frac{\partial}{\partial c t}, \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)
$$

so the corresponding vector has components

$$
\partial^{\alpha}=g^{\alpha \beta} \partial_{\beta}=\left(\frac{\partial}{\partial c t},-\frac{\partial}{\partial x},-\frac{\partial}{\partial y},-\frac{\partial}{\partial z}\right)
$$

Thus

$$
\begin{aligned}
F^{10} & =\partial^{1} A^{0}-\partial^{0} A^{1}=-F^{01} \\
& =-\frac{\partial \phi}{\partial x}-\frac{\partial A_{x}}{\partial c t}=E_{x}
\end{aligned}
$$

Similarly we find $F^{20}=E_{y}$ and $F^{30}=E_{z}$.
Now look at

$$
\begin{aligned}
F^{21} & =\partial^{2} A^{1}-\partial^{1} A^{2}=-F^{12} \\
& =-\frac{\partial A_{x}}{\partial y}+\frac{\partial A_{y}}{\partial x}=B_{z}
\end{aligned}
$$

Thus we have the components of the tensor:

$$
F^{\alpha \beta}=\left(\begin{array}{cccc}
0 & -E_{x} & -E_{y} & -E_{z} \tag{7}\\
E_{x} & 0 & -B_{z} & B_{y} \\
E_{y} & B_{z} & 0 & -B_{x} \\
E_{z} & -B_{y} & B_{x} & 0
\end{array}\right)
$$

Now we can find the transformed field components by transforming the tensor in the usual way:

$$
\bar{F}^{\mu \nu}=\Lambda_{\alpha}^{\mu} \Lambda_{\beta}^{\nu} F^{\alpha \beta}
$$

or, in matrix notation:

$$
\begin{aligned}
& \bar{F}=\Lambda F \Lambda^{T} \\
& =\left(\begin{array}{llll}
\gamma & -\gamma \beta & 0 & 0 \\
-\gamma \beta & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{cccc}
0 & -E_{x} & -E_{y} & -E_{z} \\
E_{x} & 0 & -B_{z} & B_{y} \\
E_{y} & B_{z} & 0 & -B_{x} \\
E_{z} & -B_{y} & B_{x} & 0
\end{array}\right)\left(\begin{array}{llll}
\gamma & -\gamma \beta & 0 & 0 \\
-\gamma \beta & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{llll}
\gamma & -\gamma \beta & 0 & 0 \\
-\gamma \beta & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{cccc}
E_{x} \gamma \beta & -E_{x} \gamma & -E_{y} & -E_{z} \\
E_{x} \gamma & -E_{x} \gamma \beta & -B_{z} & B_{y} \\
E_{y} \gamma-B_{z} \gamma \beta & -E_{y} \gamma \beta+B_{z} \gamma & 0 & -B_{x} \\
E_{z} \gamma+B_{y} \gamma \beta & -E_{z} \gamma \beta-B_{y} \gamma & B_{x} & 0
\end{array}\right) \\
& =\left(\begin{array}{cccc}
0 & -\gamma^{2} E_{x}+\gamma^{2} \beta^{2} E_{x} & -E_{y} \gamma+B_{z} \gamma \beta & -E_{z} \gamma-B_{y} \gamma \beta \\
-\gamma^{2} \beta^{2} E_{x}+\gamma^{2} E_{x} & 0 & E_{y} \gamma \beta-B_{z} \gamma & E_{z} \gamma \beta+B_{y} \gamma \\
E_{y} \gamma-B_{z} \gamma \beta & -E_{y} \gamma \beta+B_{z} \gamma & 0 & -B_{x} \\
E_{z} \gamma+B_{y} \gamma \beta & -E_{z} \gamma \beta-B_{y} \gamma & B_{x} & 0
\end{array}\right)
\end{aligned}
$$

But $\gamma^{2}\left(1-\beta^{2}\right)=1$, so

$$
\bar{F}=\left(\begin{array}{cccc}
0 & -E_{x} & -\gamma\left(E_{y}-\beta B_{z}\right) & -\gamma\left(E_{z}+\beta B_{y}\right) \\
E_{x} & 0 & -\gamma\left(B_{z}-E_{y} \beta\right) & \gamma\left(B_{y}+E_{z} \beta\right) \\
\gamma\left(E_{y}-\beta B_{z}\right) & \gamma\left(B_{z}-E_{y} \beta\right) & 0 & -B_{x} \\
\gamma\left(E_{z}+\beta B_{y}\right) & -\gamma\left(B_{y}+E_{z} \beta\right) & B_{x} & 0
\end{array}\right)
$$

Thus we have the transformation rules:
The components of \vec{E} and \vec{B} parallel to the relative velocity are unchanged, and the perpendicular components transform as:

$$
\begin{equation*}
\overrightarrow{\vec{E}}_{\perp}=\gamma\left(\vec{E}_{\perp}+\vec{\beta} \times \vec{B}\right) \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\overline{\vec{B}}_{\perp}=\gamma\left(\vec{B}_{\perp}-\vec{\beta} \times \vec{E}\right) \tag{9}
\end{equation*}
$$

We'll come back to these results in a moment.
Next we want to write Maxwell's equations in covariant form. We can group the equations into the source-free equations

$$
\begin{aligned}
\vec{\nabla} \cdot \vec{B} & =0 \\
\vec{\nabla} \times \vec{E}+\frac{1}{c} \frac{\partial \vec{B}}{\partial t} & =0
\end{aligned}
$$

and the equations with sources

$$
\begin{aligned}
\vec{\nabla} \cdot \vec{E} & =4 \pi \rho \\
\vec{\nabla} \times \vec{B}-\frac{1}{c} \frac{\partial \vec{E}}{\partial t} & =\frac{4 \pi \vec{j}}{c}
\end{aligned}
$$

The second pair are obtained from the covariant relation

$$
\begin{equation*}
\partial_{\alpha} F^{\alpha \beta}=\frac{4 \pi}{c} J^{\beta} \tag{10}
\end{equation*}
$$

For example, with $\beta=0$ we have

$$
\vec{\nabla} \cdot \vec{E}=\frac{4 \pi}{c} c \rho
$$

and with $\beta=1$

$$
\begin{aligned}
\partial_{\alpha} F^{\alpha 1} & =\frac{4 \pi}{c} J^{1} \\
\partial_{0} F^{01}+\partial_{2} F^{21}+\partial_{3} F^{31} & =\frac{4 \pi}{c} J^{1} \\
\frac{\partial}{\partial c t}\left(-E_{x}\right)+\frac{\partial}{\partial y}\left(B_{z}\right)+\frac{\partial}{\partial z}\left(-B_{y}\right) & =\frac{4 \pi}{c} J_{x}
\end{aligned}
$$

This equation is the x-component of

$$
\vec{\nabla} \times \vec{B}=\frac{4 \pi}{c} \vec{J}+\frac{1}{c} \frac{\partial \vec{E}}{\partial t}
$$

The other components follow similarly.
Two obtain the source-free equations we first define the dual tensor

$$
\begin{equation*}
\mathcal{F}^{\alpha \beta}=\frac{1}{2} \varepsilon^{\alpha \beta \gamma \delta} F_{\gamma \delta} \tag{11}
\end{equation*}
$$

where $\varepsilon^{\alpha \beta \gamma \delta}$ is defined similarly to $\epsilon_{i j k} . \quad\left(\varepsilon^{\alpha \beta \gamma \delta}=1\right.$ if $\alpha \beta \gamma \delta=$ an even permutation of 0123 , and so on.) First compute the covariant components of the field tensor:

$$
\begin{align*}
F_{\alpha \beta} & =g_{\alpha \gamma} g_{\beta \delta} F^{\gamma \delta} \\
& =\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)\left(\begin{array}{ccc}
0 & -E_{x} & -E_{y} \\
E_{x} & -E_{z} \\
E_{y} & -B_{z} & B_{y} \\
E_{z} & -B_{y} & B_{x} \\
-B_{x} \\
0
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 \\
0 & 0 & -1 \\
0 & 0 & 0 \\
-1
\end{array}\right) \\
& =\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)\left(\begin{array}{ccc}
0 & E_{x} & E_{y} \\
E_{x} & 0 & E_{z} \\
E_{y} & -B_{z} & -B_{y} \\
E_{z} & B_{y} & -B_{x} \\
B_{x} \\
0
\end{array}\right) \\
& =\left(\begin{array}{ccc}
0 & E_{x} & E_{y} \\
E_{z} \\
-E_{x} & 0 & -B_{z} \\
-B_{y} \\
-E_{y} & B_{z} & 0 \\
-E_{z} & -B_{y} & B_{x}
\end{array}\right) \tag{12}
\end{align*}
$$

and then we have, for example, the dual tensor components:

$$
\mathcal{F}^{01}=\frac{1}{2} \varepsilon^{01 \gamma \delta} F_{\gamma \delta}=\frac{1}{2}\left(F_{23}-F_{32}\right)=F_{23}=-B_{x}
$$

and

$$
\mathcal{F}^{12}=\frac{1}{2} \varepsilon^{12 \gamma \delta} F_{\gamma \delta}=\frac{1}{2} \varepsilon^{1203} F_{03}+\frac{1}{2} \varepsilon^{1230} F_{30}
$$

To get 1203 from 0123 We have to do two interchanges: First interchange 2 and 0 to get 1023 then interchange 1 and 0 to get 0123 . Thus this is an even permutation and $\varepsilon^{1203}=+1$. Thus

$$
\mathcal{F}^{12}=\frac{1}{2}\left(F_{03}-F_{30}\right)=E_{z}
$$

Thus

$$
\mathcal{F}=\left(\begin{array}{cccc}
0 & -B_{x} & -B_{y} & -B_{z} \tag{13}\\
B_{x} & 0 & E_{z} & -E_{y} \\
B_{y} & -E_{z} & 0 & E_{x} \\
B_{z} & E_{y} & -E_{x} & 0
\end{array}\right)
$$

Then the remaining two Maxwell equations may be written in covariant form as

$$
\begin{equation*}
\partial_{\alpha} \mathcal{F}^{\alpha \beta}=0 \tag{14}
\end{equation*}
$$

Finally we note the Lorentz force may be written in covariant form as

$$
F^{\alpha}=\frac{q}{c} F^{\alpha \beta} u_{\beta}
$$

For example

$$
\begin{aligned}
F_{x} & =\frac{q}{c}\left(F^{1 \beta} u_{\beta}\right)=\frac{q}{c} \gamma\left[E_{x} c+\left(-B_{z}\right)\left(-u_{y}\right)+B_{y}\left(-u_{z}\right)\right] \\
& =q \gamma\left[E_{x}+\left(\frac{\vec{u}}{c} \times \vec{B}\right)_{x}\right]
\end{aligned}
$$

This is the non-relativistic result in the limit $\beta \rightarrow 0, \gamma \rightarrow 1$.

2 Fields due to a moving point charge

Let a charge q move at constant velocity \vec{v} in the lab frame, and let us set up coordinates as shown in the diagram.

In its own rest frame, the field due to a point charge obeys the usual Coulomb law:

$$
\vec{E}=\frac{q}{r^{2}} \hat{r}, \quad \vec{B}=0
$$

Thus the field at the lab origin in the charge's frame is

$$
\bar{E}_{x}=-\frac{q v \bar{t}}{\left(\bar{y}^{2}+(v \bar{t})^{2}\right)^{3 / 2}}, \quad \bar{E}_{y}=-\frac{q \bar{y}}{\left(\bar{y}^{2}+(v \bar{t})^{2}\right)^{3 / 2}}, \quad \bar{E}_{z}=0
$$

Now we transform to the lab frame using equations (8) and (9) with velocity in the negative- x-direction:

$$
\begin{aligned}
E_{x} & =\bar{E}_{x}=\cdot-\frac{q v \bar{t}}{\left(\bar{y}^{2}+(v \bar{t})^{2}\right)^{3 / 2}} \\
E_{y} & =\gamma \bar{E}_{y}=-\frac{\gamma q \bar{y}}{\left(\bar{y}^{2}+(v \bar{t})^{2}\right)^{3 / 2}} \\
E_{z} & =0
\end{aligned}
$$

and

$$
\begin{aligned}
& B_{x}=\gamma(-\vec{\beta} \times \overline{\vec{E}})_{x}=0 \\
& B_{y}=\gamma(-\vec{\beta} \times \overline{\vec{E}})_{y}=-\gamma \beta \bar{E}_{z}=0 \\
& B_{z}=\gamma(-\vec{\beta} \times \overline{\vec{E}})_{z}=\gamma \beta \bar{E}_{y}=-\frac{\gamma \beta q \bar{y}}{\left(\bar{y}^{2}+(v \bar{t})^{2}\right)^{3 / 2}}
\end{aligned}
$$

Now we still need to transform the coordinates to the lab frame:

$$
\bar{x}=\gamma(x-v t) ; \quad \bar{y}=y \quad \text { and } c \bar{t}=\gamma(c t-\beta x)
$$

Since our observation point is at the lab origin, $x=0$. Thus

$$
\begin{aligned}
E_{x} & =-\frac{q \beta \gamma c t}{\left(y^{2}+(\beta \gamma c t)^{2}\right)^{3 / 2}} \\
E_{y} & =-\frac{\gamma q \bar{y}}{\left(y^{2}+(\beta \gamma c t)^{2}\right)^{3 / 2}} \\
B_{z} & =-\frac{\gamma \beta q \bar{y}}{\left(y^{2}+(\beta \gamma c t)^{2}\right)^{3 / 2}}=\beta E_{y}
\end{aligned}
$$

First check that these results are correct in the non-relativistic limit ($\beta \rightarrow 0$, $\gamma \rightarrow 1$). The interesting result is the relativistic limit as γ becomes very large. The fields become impulsive, (large for a very small time interval). The fields fall rapidly to zero for

$$
|t|>\frac{y}{\beta \gamma c}
$$

which is very small when γ is large. In addition, the magnitude of the fields becomes large for $t \approx 0$. The diagram shows the field components as functions of time for $\beta=0.1(\gamma=1.005)$ and $\beta=0.999(\gamma=22.366)$.

$E_{y} y^{2} / q$ versus $c t / y$. Solid: $\beta=0.1$ multiplied by 5 , Dashed, $\beta=0.999$

3 Invariants

We can form several invariants from the field tensors $F^{\alpha \beta}$ and $\mathcal{F}^{\alpha \beta}$. First we evaluate

$$
F^{\alpha \beta} F_{\alpha \beta}=B^{2}-E^{2}
$$

Thus if we have a pure electric field in one frame, $E>B$ in all other frames. The fields maintain their dominantly electric character, and similarly for magnetic fields.

A second invariant is

$$
F_{\alpha \beta} \mathcal{F}^{\alpha \beta}=-\vec{E} \cdot \vec{B}
$$

Since this product is invariant, if either of \vec{E} or \vec{B} is zero in one frame, the fields in any other frame are perpendicular.

Check that these results hold true for the point charge fields we calculated above.

A special case is the EM wave, for which both invariants are zero: $(\vec{E} \perp \vec{B}$ and $E=B$). These properties are therefore true in all frames.

