
Finite element analyis January 2020

1 Finite element analysis
Here’s the big idea: we want a procedure for numerically solving a poten-
tial problem with a source g (�x) in a region R and with specified boundary
conditions.
Let’s look at a Dirichlet problem in 2 dimensions.
We start with two general relations. First, if ∇2ψ = −g in R, then]

R

φ
�∇2ψ + g� dxdy = 0

for any function φ. (If ψ is the potential, then g = ρ/ε0.) The next relation we
need is Green’s first identity from Chapter 1 ("Formal" notes eqn 1),] �

φ∇2ψ + �∇φ · �∇ψ
�
dV =

]
S

φ
∂ψ

∂n
dA = 0

where we have chosen the function φ to be zero on the boundary, so that the
surface integral is zero. (Note: in a two dimensional problem the “volume” is
an area and the bounding “surface” S is actually a curve.) Now inserting the
differential equation for ψ, we get:]

R

�
�∇φ · �∇ψ − gφ

�
dxdy = 0 (1)

The next step is to set up a grid over the region R. We expand the desired so-
lution ψ in a set of functions φij each of which is zero except on a small region
around the grid point (i, j) . For example, let:
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φij =

+ �
1− |x−xi|

h

��
1− |y−yj |

h

�
for |x− xi| < h, |y − yj | < h

0 otherwise

which looks like this:
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Then let
ψ (x, y) =

[
k,l

ψklφkl (x, y)

Effectively, the function φkl smears the potential value ψkl over one grid square,
converting a set of numerical values ψkl into a continuous function.ψ (x, y) .
Now insert this assumed form into the integral (1), and take the function φ to
be one of the φij .]

R

[
k,l

ψkl�∇φkl · �∇φijdxdy =
]
R

φijg (x, y) dxdy (2)

The integral on the right is non zero only on a square region surrounding the
point (xi, yj) , and, because the function φij peaks sharply at the center of the
square, we can approximate the integral as:]

R

φijg (x, y) dxdy * g (xi, yj)
]
square

φijdxdy

which may be evaluated as follows. Let u = x− xi and v = y − yj . Then:]
square

φijdxdy =

#] h

0

�
1− u

h

�
du+

] 0

−h

�
1 +

u

h

�
du

$#] h

0

�
1− v

h

�
dv +

] 0

−h

�
1 +

v

h

�
dv

$

=

�
h

2
+
h

2

��
h

2
+
h

2

�
= h2
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Thus eqn: (2) becomes:[
k,l

ψkl

]
R

�∇φkl · �∇φijdxdy = h2g (xi, yj) (3)

where the sum on the left is over all the grid points. However, the integrand
is non-zero only on a small square region 2h by 2h surrounding the grid point
(i, j). First note that inside this square region,

�∇φij = ∓
1

h

�
1∓ v

h

�
x̂+

�
1∓ u

h

��
∓1
h

�
ŷ

where in the first factor of each term we take the upper sign on the right half
of our square (0 < u < h) and the bottom sign on the left (−h < u < 0); in the
second factor we take the top sign on the top of the box (0 < v < h) and the
bottom sign on the bottom (−h < v < 0).
Thus if k = i and l = j:]
box

�∇φij · �∇φi,jdxdy =
1

h2

] h

0

] h

0

��
1− v

h

�2
+
�
1− u

h

�2�
dudv

+
1

h2

] h

0

] 0

−h

��
1 +

v

h

�2
+
�
1− u

h

�2�
dudv

+
1

h2

] 0

−h

] h

0

��
1− v

h

�2
+
�
1 +

u

h

�2�
dudv

+
1

h2

] 0

−h

] 0

−h

��
1 +

v

h

�2
+
�
1 +

u

h

�2�
dudv

In the four terms, let α = 1 − v
h (terms1 and 3), α = 1 + v

h (terms 2 and 4),
β = 1 − u

h (terms1 and 2) and β = 1 + u
h (terms 3 and 4). Then the integral

becomes ]
box

�∇φij · �∇φi,jdxdy = 4

] 1

0

] 1

0

�
α2 + β2

�
dαdβ

=
4

3

�
α3β + αβ3

���1
0

���1
0
=
8

3

However if k = i+ 1 and l = j :

φi+1,j =

�
1− |x− xi − h|

h

��
1− |y − yj |

h

�
=

�
1− |u− h|

h

��
1− |v|

h

�
for |u− h| < h and |v| < h

and zero otherwise. The overlap region is on the right side of our box (0 < u < h)
where

�∇φi+1,j =
1

h

�
1∓ v

h

�
x̂+

u

h

�
∓1
h

�
ŷ
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giving]
box

�∇φij · �∇φi+1,jdxdy =
1

h2

] h

0

] h

0

�
−
�
1− v

h

�2
+
�
1− u

h

� u
h

�
dudv

+
1

h2

] 0

−h

] h

0

�
−
�
1 +

v

h

�2
+
�
1− u

h

� u
h

�
dudv

= 2

] 1

0

] 1

0

�−α2 + β (1− β)
�
dαdβ

= 2

�
−α

3β

3
+

αβ2

2
− αβ3

3

�����1
0

�����
1

0

= 2

�
1

2
− 2
3

�
= −1

3

We get the same result in all the overlap regions. Thus equation (3) may be
written as a matrix equation:

KΨ= G
where the matrix K is described as sparse — it has only a few non-vanishing
elements and they are all near the diagonal, like this:

K =1
3


8 −1 −1 0 0 0
−1 8 −1 −1 0 0
−1 −1 8 −1 −1 0
0 −1 −1 8 −1 −1
0 0 −1 −1 8 −1
0 0 0 −1 −1 8


Matrices of this type are relatively easy to invert numerically. The column
vectors Ψ and G contain the values of the potential and the source at the grid
points. and we have reduced the potential problem to a matrix inversion.

Ψ= K−1G

For regions with odd shapes, the square grid we used above does not fit very
well. Triangles of arbitrary size and shape can be fit onto a region of almost
any shape. So now we’ll modify the method above to use triangles instead of
squares. By varying the sizes and shapes of the triangles we can also get better
resolution where things change more rapidly.
The basic triangular element has vertices at points that we label 1, 2 and 3

with coordinates (x1, y1) , (x2, y2) , and (x3, y3) . We approximate the potential
solution ψ (x, y) in this triangle by a Taylor-series-type expansion of the form:

ψ (x, y) = A+Bx+Cy

The 3 values of the potential at the 3 vertices give enough information to evalu-
ate the 3 coefficients A,B and C. To make the numerical computation more effi-
cient, it is convenient to define three “shape functions” Ni (x, y) = ai+bix+ciy
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that have the properties:
Ni (xi, yi) = 1

and
Ni (xj , yj) = 0, i 9= j

These functions are the analogue of the φij that we used with the square grid.
They have the effect of smearing the potential Vi at node i over the whole
triangle. Then, for example, for N1 we have:

a1 + b1x1 + c1y1 = 1

a1 + b1x2 + c1y2 = 0

a1 + b1x3 + c1y3 = 0

This set of equations has a nontrivial solution for the coefficients a1, b1 and c1
if the determinant:

D =

������
1 x1 y1
1 x2 y2
1 x3 y3

������ 9= 0
The determinant is:

D = x2y3 − x3y2 + x3y1 − x1y3 + x1y2 − x2y1
= (x2 − x1) (y3 − y1)− (x3 − x1) (y2 − y1)

This is related to the area of the triangle. To see how, remember that we can
write the area using the cross product:

A =
1

2

����c1 × �c2

���
where �c1 and �c2 are vectors along the sides of the triangle. In terms of the
coordinates:

�c1 = (x2 − x1) x̂+ (y2 − y1) ŷ
and

�c2 = (x3 − x1) x̂+ (y3 − y1) ŷ
Then

2A = |(x2 − x1) (y3 − y1)− (x3 − x1) (y2 − y1)|
and so

|D| = 2A
and so is never zero. If we label the vertices so as to make D positive, then the
solution for the coefficients is:

a1 =
1

2A
(x2y3 − x3y2)

b1 =
1

2A
(y2 − y3)

c1 = − 1

2A
(x2 − x3) (4)
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and similarly for the others.
Now the procedure runs pretty much as before. In equation (1) we take:

ψ =
[
j

VjNj

where Vj are constants (the values of the potentials at the nodes) and the sum
is over all the vertices of all the triangles. Next take the function φ = Ni for
one vertex of one triangle. Then relation (1) reduces to an integral over the one
triangle where �∇Ni is non-zero:

3[
j=1

Vj

]
triangle

�∇Ni · �∇Nj dxdy =

]
gNi dxdy * g (x, y)

]
Ni dxdy

= g (x, y)A (ai + bix+ ciy) (5)

where x, y are the coordinates of the center of the triangle. Now using our
solutions (4) for the coefficients, we have:

a1 + b1x+ c1y =
1

2A

�
(x2y3 − x3y2) + (y2 − y3) (x1 + x2 + x3)

3
− (x2 − x3) (y1 + y2 + y3)

3

�
=

1

6A
[x2y3 − x3y2 + x1y2 − x1y3 − x2y1 + x3y1] = D

6A
=
1

3

On the left hand side of (5), we use the result that

�∇Ni = bix̂+ciŷ
and is constant over the area of the triangle, so (5) becomes

3[
j=1

Vj (bibj + cicj)A = g (x, y)
A

3

To combine the triangles, we define

kij ≡ (bibj + cicj)A (6)

(Note here that if we chose to label our vertices so that D comes out negative,
the a, b, c change sign, but we would get the same values for kij .) If i = j, kii
refers to a single node. For each internal node i we sum over all the triangles
connected to that node.

Kii =
[

triangles

kii (7)

The elements kij , i 9= j, are associated with two nodes, i.e. with the side of
the triangle connecting the nodes. So we sum over all the triangles with a side
along ij (usually two).

Kij =
[

triangles

kij i < j ≤ N (8)
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If a node is on the boundary, the value of the potential there will be known.
These terms are moved to the right hand side and serve as source terms. So we
have:

Gi =
1

3

[
triangles

Atgt −
N0[

j=N+1

KijVj (9)

where the numbers N + 1 to N0 label the nodes on the boundary.
Then combining the results for all the triangles, we have the matrix equation:

KΦ= G (10)

where again K is a sparse matrix, and the vector Φ contains the values Vj of
the potentials at the nodes.
Example of how to get the kij . Consider an isoceles right triangle of

sides 1,1 and
√
2. Put the origin at the right angle, and label the vertices 1 (the

origin), 2 (on the y-axis) and 3 (on the x-axis). Then the area of the triangle is
1/2, and 2A = 1

.

a1 = x2y3 − x3y2 = 0− 1 = −1
b1 = y2 − y3 = 1

c1 = − (x2 − x3) = − (−1) = 1
b2 = y3 − y1 = 0

c2 = − (x3 − x1) = −1
Then from (6) we get

k11 =
1

2

�
b21 + c

2
1

�
=
1

2
(1 + 1) = 1

k12 =
1

2
(b1b2 + c1c2) =

1

2
(0 + 1 (−1)) = −1

2

and so on. (See Jackson Fig 2.16). These coefficients depend on the shape of
the triangle but not on its orientation or size.
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