
1 Lagrangian for a continuous system

Let’s start with an example from mechanics to get the big idea. The physical

system of interest is a string of length  and mass per unit length  fixed at

both ends, and under tension  Choose −axis along the unperturbed string,
and −axis perpendicular to it. When the string is vibrating, its kinetic energy
is:
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To get the potential energy, we use the method of virtual work. The net force

on a string segment has components:
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Then the virtual work is
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Now integrate by parts, and make use of the fixed end condition:
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The Lagrangian for the string is:
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is the Lagrangian density for the string.
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The action is
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Taking the variation of the action, we get
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Integrating by parts gives:
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Thus for the action to be an extremum, we need
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Using equation (1), we find:
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which is the wave equation for the string.

An alternative approach is to write the string displacement as a sum over

normal modes:
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Then the Lagrangian density (1) is
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and then the Lagrangian is
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When we integrate over  the only terms that survive are those with  = 
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The mode amplitudes  act as the generalized coordinates for the string. Then

Lagrange’s equations are
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which is the harmonic oscillator equation with frequency  = ()
p
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2 Lagrangian for the electromagnetic field

Now we want to do a similar treatment for the EM field. We want a Lagrangian

density such that the action
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Z
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is a Lorentz invariant, and where L is a function of the fields. The "obvious"
invariant to try is

Lguess = 

(Recall this is proportional to 2 −2 an "energy-like" thing.) Here the com-

ponents of the potential  are the "normal modes" — they behave like the 
in the previous section. Then Lagrange’s equations (2) are:
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So equations (4) become
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which are Maxwell’s equations in the absence of sources. We can fix up the

Lagrangian by adding the interaction term 1
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With this Lagrangian density
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which are the two Maxwell equations that include sources.

3 The Hamiltonian

Now we form the Hamiltonian. First let’s look at the string. Using equation

(3):
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where  is the total (kinetic plus potential) energy per mode. By analogy, we

get for the EM field system without sources
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This tensor is not symmetric, because the first term contains only one half of

the field tensor: rather than 
The conservation laws require that the

energy tensor be symmetric, so we have to modify the result.

4 The energy-momentum tensor

Recall that the field energy density (non-relativistic) is 1
8
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Poynting theorem may be written
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We’d like to express this result in covariant form. We obviously need something

quadratic in the fields. For example:
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Now we’d like the (0,0) component to be the energy density. We can get that

if we add the tensor 1
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and so we guess that the full set of conservation laws are given by:

Θ
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I leave it to you to show that the  =  components give momentum conservation

(Jackson equation 6.122).

5 Angular momentum

Cross products are not proper vectors. They are pseudo-vectors because they

do not transform properly under reflections. Thus it is usually better to express

quantities such as angular momentum of a particle ( = ×) as antisymmetric

tensors. For example the tensor
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Extending this idea, let’s look at the tensor
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The 3×3 spacelike part is the tensor  and thus represents the angular

momentum of the system. In addition:
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where  is the energy of the particle. Conservation of angular momentum for

the system is expressed as  = constant. Thus we conjecture that the full

conservation law is  = constant. (Or equivalently 
 = 0) This gives

for the ( 0) component:
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The term on the left hand side is the position of the center of mass,
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an eminently sensible result.

To get the equivalent result for the EM field we form the tensor

 = Θ −Θ

and then the conservation laws should be given by:


 = 0

Taking  = 0 gives the CM motion as above.

6 The Darwin Lagrangian

The analysis above is for source-free fields. We might attempt to add the free-

particle Lagrangian to get a complete description of the particle-plus-field sys-

tem, but this approach fails because of retardation effects. (The fields propagate

at the speed of light.) We can calculate a complete Lagrangian in a single ref-

erence frame, inlcuding relativistic effects up to order 2 = ()
2


Let’s start with a 2-particle system. Both particles produce fields and both

can move under the influence of those fields. The interaction term for charge 1

interacting with the fields due to 2 is
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If we now work in a single reference frame and use the coordinate time rather

than proper time as our time variable, we should drop the factor We want to

evaluate this expression to second order in  If we work in Coulomb gauge,

the potential 2 = 2 is exact. We only need  to first order since it appears

in combination with 1 This means we can ignore retardation effects. Then:
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Let’s look at the integral. First make a change of origin. Let  = 0 − 2 and

with  = − 2 we getZ
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where we have put the polar axis for  along  Now

2 · ̂ = 2 · (̂ cos  + sin  (̂ cos+ ̂ sin))

Integration over  renders the − and −components zero.
Next we make use of the orthogonality of the  ()  noting that cos  =
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Then the interaction term for 2 particles (equation 6 with the  dropped) is:
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Adding this term to the kinetic energy (Lagrangian notes pg 5), we have the

Darwin Lagrangian for a collection of charged particles:
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To be consistent, we should evaluate the first term to second order in i.e.¡
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term which is irrelevant, we have
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