
Jackson "formal" notes January 2020

1 Some formal theorems
A physics problem cannot be completely specified by a differential equation,
but we also need an appropriate set of boundary conditions. Often we choose
the electrostatic potential Φ to be zero at infinity. But sometimes we are
concerned with a finite region of space with the potential or charge specified
on the boundary walls. These boundary conditions result from the presence of
charges outside the volume of interest, but we either do not know or do not care
about these charges. For example, we may use a battery to set a conductor to
a specified potential, and we do not care about the charge distribution in the
battery.
To develop some useful theorems we start with some pure mathematics. Let

φ and ψ be differentiable scalar functions of position defined in a volume V and
on the bounding surface S. Then

�∇ · φ�∇ψ = φ∇2ψ + �∇φ · �∇ψ

Now integrate this expression over a volume V , and use the divergence theorem
on the left side, to get

V

�∇ · φ�∇ψ dV =
V

φ∇2ψ + �∇φ · �∇ψ dV

S

φ�∇ψ · n̂ dA =

S

φ
∂ψ

∂n
dA =

V

φ∇2ψ + �∇φ · �∇ψ dV (1)

(Green’s first identity) . As always when using the divergence theorem, n̂ is the
normal outward from the volume V . We have used the shorthand notation

n̂ · �∇ ≡ ∂

∂n

Be careful with this: there is no variable "n" with respect to which we are
diffferentiating. Next we interchange the functions φ and ψ and subtract the
two relations to get

V

φ∇2ψ − ψ∇2φ dV =
V

�∇ · φ�∇ψ − �∇ · ψ�∇φ dV

=

S

φ�∇ψ − ψ�∇φ · n̂ dA (2)

(Green’s second identity.) This result is also sometimes called Green’s theorem.
First we’ll use these results to show that the solution to a well-defined po-

tential problem is unique. We’ll also learn what we need for the problem to be
well-defined.
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Suppose we have two solutions to a potential problem in a volume V, that
is Φ1 and Φ2 both satisfy Poisson’s equation in V with the same charge density
ρ (�x) :

∇2Φi = − ρ

ε0

and either Dirichlet boundary conditions (Φ specified on S) or Neumann bound-
ary conditions (∂Φ∂n ≡ n̂ · �∇Φ specified on S). The latter condition is equivalent
to having a known charge density on S (Notes 1 eqn 11). Let the functions φ
and ψ in Green’s first identity (1) both equal χ, where χ ≡ Φ1 −Φ2. Then :

V

χ∇2χ+ �∇χ · �∇χ dV =

S

χ
∂χ

∂n
dA

But ∇2χ = 0 in V and either χ = 0 on S (Dirichlet conditions) or ∂χ
∂n = 0 on S

(Neumann Conditions), so this equation reduces to

V

�∇χ
2

dV = 0

Since the integrand is ≥ 0 everywhere in V, we conclude that
�∇χ = 0 in V

and thus the potentials can differ by at most a constant. That is, the solution
is unique up to a constant. Notice that we needed to know either Φ on the
surface or ∂Φ

∂n on the surface, but not both. Thus the problem is well defined
provided that we know (1) the charge density in the volume and (2) either Φ or
∂Φ
∂n on the surface. In the event that Φ is specified on S, the constant must be
zero and the potential is unique.
Now let φ be the electrostatic potential Φ (�x3) in the volume V and let

ψ ≡ 1/R = 1/ |�x− �x3| . Then from Green’s second identity (equation 2), with
the primed variables as the integration variables, we have

V

Φ (�x3)∇32 1
R
− 1

R
∇32Φ (�x3) dV 3 =

S

Φ�∇3 1
R
− 1

R
�∇3Φ · n̂3 dA3

V

Φ (�x3) [−4πδ (�x− �x3)]− 1

R
−ρ (�x

3)
ε0

d3�x =

S

Φ
∂

∂n3
1

R
− 1

R

∂

∂n3
Φ dA3

We used Lea eqn 6.26 to evaluate ∇32 1R . Evaluating the first integral on the
left with the sifting property, we have:

−4πΦ (�x) = −
V

1

R

ρ (�x3)
ε0

d3�x3 +
S

Φ
∂

∂n3
1

R
− 1

R

∂

∂n3
Φ dA3
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or,

Φ (�x) =
1

4πε0 V

ρ (�x3)
R

d3�x3 − 1

4π
S

Φ (�x3)
∂

∂n3
1

R
− 1

R

∂

∂n3
Φ (�x3) dA3

This is, in principle, a solution for the potential in V. The first term is the
same expression we derived for infinite space (Notes 1 eqn 29), now restricted to
the volume V, and the second term, involving boundary conditions, is the effect
of charges outside the volume. The problem is that we do not usually know
both Φ and ∂

∂nΦ on the boundary. In fact, if we did the problem would be
overspecified and it is possible that no solution would exist (see Lea Appendix
X.) To avoid this dilemma, we need to choose a better function ψ.
We want to retain the nice feature of 1/R, that is ∇2ψ = −4πδ (�x− �x3) ,

because that is how we obtained Φ (�x) . But we need boundary conditions that
eliminate one of the surface terms. Thus the Green’s function is defined by
the following mathematical problem:

∇32G (�x,�x3) = −4πδ (�x− �x3) (3)

and either
GD = 0 on S (Dirichlet Green’s function) (4)

or
∂

∂n
GN = constant on S (Neumann Green’s function) (5)

We cannot choose ∂
∂nGN = 0 on S in general, because

V

∇2GN dV =

S

∂GD
∂n

dA

But the left hand side is not zero. From equation (3),

V

∇2GN dV =
V

−4πδ (�x− �x3) dV = −4π

Thus the best we can do is take ∂GD

∂n to be constant, in which case

∂GD
∂n

= −4π
A

(6)

where A is the total area of the closed surface bounding the volume. If this
area happens to be infinite, then (but only then) we may choose ∂GD

∂n = 0.With
the Green’s functions defined this way, we can find expressions for the potential
as follows.

3



Dirichlet problem:
Again we use eqn. (2), this time with φ equal to the electrostatic potential

Φ in the volume V and ψ equal to the Green’s function GD.

V

Φ∇32GD −GD∇32Φ dV 3 =
S

Φ�∇3GD −GD �∇3Φ · n̂3 dA3

We use equations (3) and (4) for G and Poisson’s equation for Φ to get:

V

Φ [−4πδ (�x− �x3)]−GD −ρ (�x
3)

ε0
d3�x3 =

S

Φ
∂GD
∂n3

− 0 dA3

Thus

Φ (�x) =
1

4πε0 V

GD (�x,�x
3) ρ (�x3) d3�x3 − 1

4π
S

Φ
∂GD
∂n3

dA3 (7)

which is Jackson’s eqn. 1.44. We need to know Φ, but not ∂Φ/∂n, on S. The
Dirichlet Green’s function is symmetric in �x and �x3 (see Lea §C.7.1 and Jackson
problem 1.14.).

GD (�x,�x
3) = GD (�x3,�x) (8)

Neumann problem:
The analysis proceeds as before. Only the boundary conditions change.

This time we use the condition (6).

Φ (�x) =
1

4πε0 V

GN (�x, �x
3) ρ (�x3) d3�x3 − 1

4π
S

Φ
∂GN
∂n3

−GN ∂Φ

∂n3
dA3

Φ (�x) =
1

4πε0 V

GN (�x, �x
3) ρ (�x3) d3�x3 − 1

4π
S

Φ −4π
A

dA3 +
1

4π
S

GN
∂Φ

∂n3
dA3

Then, writing <Φ>S = 1
A

S

Φ dA, the average value of the potential over the

surface S, we obtain Φ in terms of ρ in V and ∂Φ/∂n on S :

Φ (�x)− < Φ >S=
1

4πε0 V

GN (�x, �x
3) ρ (�x3) d3�x3 +

1

4π
S

GN
∂Φ

∂n3
dA3 (9)

(Jackson 1.46) It is often possible to choose <Φ>S to be zero.
The first step is, of course, to find the Green’s function. This mathematical

problem is easier than the original problem of finding Φ because (a) the dif-
ferential equation is simpler since a delta function replaces the charge density
function, and (b) the boundary conditions are also simpler, with zero replacing
the potential function on S in the Dirichlet case, and a constant replacing the
normal derivative in the Neumann case. As the semester progresses we will
learn methods for finding G.
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2 Numerical methods for finding potential

The big idea in all these methods is that energy is an extremum when a sys-
tem is in equilibrium, and is a minimum when the equilibrium is stable. The
electrostatic energy is proportional to

I (Φ) =
V

�E
2

dV =
V

�∇Φ
2

dV (10)

(Notes 2 eqn 4). Thus we may guess the potential function Φ and refine the
guess by making the energy-like functional I (Φ) (10) an extremum.

2.1 Relaxation methods

The relaxation method is a convenient method for solving 2-D boundary-value
potential problems. You can even do this one on a spreadsheet!

Suppose we want to find a solution to Laplace’s equation in a volume V with
a specifed potential function V (�x) on the boundary. We divide the volume up
using a grid of rectangles and label the intersection points (the grid points or
lattice sites) with indices i, j. For the example here I’ll choose the grid to be
made up of squares, h on a side. Then we can estimate the derivatives at a
given grid point numerically using one of the following schemes:
centered difference:

∂ψ

∂x i,j

=
ψi+1,j − ψi−1,j

2h

forward difference
∂ψ

∂x i,j

=
ψi+1,j − ψi,j

h

backward difference
∂ψ

∂x i,j

=
ψi,j − ψi−1,j

h
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Now we form the energy-like functional I over the top right corner of the
shaded square using forward differences:

I = �∇ψ
2

dV =
∂ψ

∂x

2

+
∂ψ

∂y

2

dxdy

=
ψi+1,j − ψi,j

h

2

+
ψi,j+1 − ψi,j

h

2

h2

For the top left square we use backward differences. Then for the whole shaded
square:

I = 2 ψi+1,j − ψi,j
2
+ ψi,j+1 − ψi,j

2
+ ψi−1,j − ψi,j

2
+ ψi,j−1 − ψi,j

2

and

∂I

∂ψi,j
= −4 ψi+1,j − ψi,j + ψi,j+1 − ψi,j + ψi−1,j − ψi,j + ψi,j−1 − ψi,j

= −4 ψi+1,j + ψi,j+1 + ψi−1,j + ψi,j−1 − 4ψi,j
Setting this equal to zero, we find the value of ψi,j that makes I an extremum:

ψi,j =
1

4
ψi+1,j + ψi,j+1 + ψi−1,j + ψi,j−1

= average of values at 4 surrounding sites

Thus the relaxation method amounts to filling the grid with values, any values,
putting the exactly known boundary values at the lattice sites on the boundary,
then re-computing the interior values by averaging, starting with the lattice
sites next to the boundary. The process is iterated until it converges. Jackson
(pg 48-49) discusses some ways to improve this scheme.
To iterate in EXCEL, you will need to set it up to do manual calculations.

Under the tools tab, click "options" then "calculation" and check the manual
box. (On a MAC the calculation options are under "formulas" .)

2.2 Variational methods

In this method we make a guess as to a function ψ (x) that approximates the
potential and form the energy-like functional

I (ψ) =
1

2 V

�∇ψ · �∇ψdV −
V

g
ψ

ε0
dV −

S

fψdA (11)

Note that if the function ψ actually is the correct potential function, then the
first volume integral gives the electrostatic energy in the volume V of interest,
modulo a constant. We’ll discuss the meaning of the other two terms below.
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Now perform a variation on the function ψ by letting ψ → ψ + δψ. We
obtain a corresponding variation in I :

δI =
V

�∇ψ · �∇δψ dV − 1

ε0 V

gδψ dV −
S

fδψ dA

Next use the relation (1)

φ∇2ψ + �∇φ · �∇ψ dV =

S

φ
∂ψ

∂n
dA

with φ = δψ :

δψ∇2ψ + �∇δψ · �∇ψ dV =

S

δψ
∂ψ

∂n
dA

and substitute into the first term of δI

δI =

S

δψ
∂ψ

∂n
dA−

V

δψ∇2ψ dV − 1

ε0 V

gδψ dV −
S

f δψ dA

= −
V

δψ ∇2ψ + g

ε0
dV +

S

δψ
∂ψ

∂n
− f dA

To have an extremum, we need δI = 0 for any variation δψ, which we can
achieve if

∇2ψ = − g
ε0
= − ρ

ε0

(Poisson’s equation for the potential in V ) and

∂ψ

∂n
= f on S (Neumann conditions)

or
δψ = 0 on S (Dirichlet conditions)

(f may be taken to be identically zero for a Dirichlet problem.)
Thus we can solve for the potential using the following method:

• Pick a trial function ψ (�x) that fits the boundary conditions on the bound-
ing surface S. The function ψ (�x) must contain one or more adjustable
parameters αi.

• Form the energy-like functional I (ψ(αi)) (11).

• Make I an extremum by setting the derivatives ∂I
∂αi

= 0. This determines
the αi.
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Example: The volume of interest is the infinite slab occupying the volume
0 < x < 1. Within the volume there is a charge density

ρ (x)

ε0
=

kx if x < 1/2
k (1− x) if x > 1/2

where k is a constant.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

x

rho

ρ (x)

and the boundary conditions are Φ = 0 at x = 0 and at x = 1. We choose the
trial function:

Trial : ψ = Ax (1− x)
that satisfies the boundary conditions. It has only one parameter: A. Its
derivative is:

dψ

dx
= A (1− 2x)

The function g is the function ρ (x) given above, and since we have a Dirichlet
problem, we take f ≡ 0. Then our energy-like functional (11) is:

I = I (ψ) =
1

2 V

�∇ψ · �∇ψdV −
V

g
ψ

ε0
dV

=
1

2

1

0

A2 (1− 2x)2 dx−
1/2

0

Akx2 (1− x) dx−
1

1/2

Akx (1− x)2 dx

=
1

6
A2 − 5

96
Ak

So
dI

dA
=
1

3
A− 5

96
k = 0⇒ A =

5

32
k

and the variational solution is:
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ψ =
5k

32
x (1− x)

Let’s compare with the exact solution. We start with the differential equa-
tion:

d2ψ

dx2
=
−kx if x < 1/2
k (x− 1) if x > 1/2

Integrating once, we get

1

k

dψ

dx
=

−x22 +A if x < 1/2
x2

2 − x+B if x > 1/2

dψ/dx is continuous for 0 < x < 1, so matching at x = 1/2, we find

−1
2

1

2

2

+A =
1

2

1

2

2

− 1
2
+B

A =
1

4
− 1
2
+B = B − 1

4

Integrating again, and applying the boundary condition at x = 0, we get:

ψ

k
=

B − 1
4 x− x3

6 if x < 1/2
x3

6 − x2

2 +Bx+C if x > 1/2

At x = 1 the boundary condition is:

0 =
1

6
− 1
2
+B +C = −1

3
+B +C ⇒ C =

1

3
−B

and matching at x = 1/2, we have

B − 1
4

1

2
− (1/2)

3

6
=

(1/2)3

6
− 1
2

1

2

2

+
B

2
+
1

3
−B

1

2
B − 7

48
=

11

48
− 1
2
B

B =
11

48
+
7

48
=
3

8

Then
C =

1

3
−B = 1

3
− 3
8
= − 1

24

and
A = B − 1

4
=
3

8
− 1
4
=
1

8

So the exact solution is:

ψ (x) = k
x
8 − x3

6 if 0 < x < 1/2

− 1
24 +

3x
8 − x2

2 +
x3

6 if 1 > x > 1/2
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The two solutions are compared in the graph below. The variational solution
is a very good approximation to the exact solution, even though we chose a very
simple trial function. At x = 0.5,

true-approx
true

=
4.166 7× 10−2 − 5

32
1
4

4.166 7× 10−2 = 6.25× 10−2

The approximate solution is good to about 6%. We could achieve better agree-
ment near the peak by adding an additional parameter to the trial solution.
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0.00

0.01
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x
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Black: exact dashed: variational
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