Motion using Hamiltonians

S.M.Lea

Let's look at a particle moving in a uniform magnetic field $\vec{B}=B_{0} \hat{z}$. We can satisfy the Lorentz gauge condition

$$
\partial_{\alpha} A^{\alpha}=0
$$

and the relation $\vec{B}=\vec{\nabla} \times \vec{A}$ with the potential

$$
A^{\alpha}=\left(0,0, B_{0} x, 0\right)
$$

The corresponding canonical momentum is:

$$
P^{\alpha}=p^{\alpha}+\frac{q}{c} A^{\alpha}=\left(p^{0}, p^{1}, p^{2}+\frac{q}{c} B_{0} x, p^{3}\right)
$$

and Hamilton's equations are:

$$
\begin{equation*}
\frac{d P^{\alpha}}{d \tau}=\frac{q}{m c}\left(P_{\beta}-\frac{q}{c} A_{\beta}\right) \partial^{\alpha} A^{\beta} \tag{1}
\end{equation*}
$$

where the only non-zero component of $\partial^{\alpha} A^{\beta}$ is $\partial^{1} A^{2}=-B_{0}$, since $\partial^{1} \equiv-\frac{\partial}{\partial x}$. Then from Hamilton's equations (1), we get:

$$
\begin{equation*}
\frac{d P^{0}}{d \tau}=0 \Rightarrow P^{0}=p^{0}=\gamma m c=\text { constant } \tag{2}
\end{equation*}
$$

Thus the particle's energy remains constant.

$$
\frac{d P^{2}}{d \tau}=0 \Rightarrow P^{2}=p^{2}+\frac{q}{c} B_{0} x=m u_{y}+\frac{q}{c} B_{0} x=\mathrm{constant}
$$

where u_{y} is the y-component of the 4 -velocity, $=\gamma v_{y}$ and \vec{v} is the 3 -velocity. We may choose our origin so that $u_{y}=0$ when $x=0$, and then:

$$
\begin{equation*}
u_{y}=-\frac{q B_{0}}{m c} x \tag{3}
\end{equation*}
$$

The next equation is:

$$
\frac{d P^{3}}{d \tau}=0 \Rightarrow P^{3}=p^{3}=m u_{z}=\gamma m v_{z}=\mathrm{constant}
$$

Thus the particle's velocity component along the field remains constant. The last equation is:

$$
\begin{aligned}
\frac{d P^{1}}{d \tau} & =\frac{q}{c}\left(u_{2}\right)\left(-B_{0}\right) \\
\frac{d p^{1}}{d \tau} & =\frac{d}{d \tau}\left(m u^{1}\right)=\frac{q}{c}\left(-u_{y}\right)\left(-B_{0}\right)=\frac{q}{c} u_{y} B_{0}
\end{aligned}
$$

where $u_{y}=u^{2}=-u_{2}$. We may insert the result (3) on the right hand side:

$$
\frac{d u^{1}}{d \tau}=\frac{d^{2} x}{d \tau^{2}}=-\left(\frac{q B_{0}}{m c}\right)^{2} x
$$

which we may integrate immediately to get:

$$
x=A \cos \Omega \tau+B \sin \Omega \tau
$$

with Ω equal to the cyclotron frequency:

$$
\Omega=\frac{q B_{0}}{m c}
$$

Then from equation (3), we have

$$
\frac{d y}{d \tau}=u_{y}=-\Omega(A \cos \Omega \tau+B \sin \Omega \tau)
$$

and thus

$$
y=-A \sin \Omega \tau+B \cos \Omega \tau+C
$$

Since we have already established that γ remains constant (eqn 2), we may write $\tau=t / \gamma$ We may also choose the origin of τ (and t) so that:

$$
x=A \cos \frac{\Omega t}{\gamma}
$$

(i.e. $B=0$), and again, careful choice of origin allows us to take $C=0$,so

$$
y=-A \sin \frac{\Omega t}{\gamma}
$$

which is circular motion with angular frequency $\Omega / \gamma=e B / \gamma m c$ and radius A. No surprises.

It is sometimes convenient to write the angular velocity as a vector. Remember that $\vec{\omega}$ points along the axis of rotation, per the RHR. This particle is gyrating with y decreasing, so $\vec{\Omega}$ is in the negative z-direction, and thus:

$$
\vec{\Omega}=-\frac{q}{m c} \vec{B}
$$

