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1 Plasma as an example of a dispersive medium
We shall now discuss the propagation of electromagnetic waves through a hydrogen

plasma – an electrically neutral fluid of protons and electrons. This will allow us to
develop a specific expression for the dielectric constant as a function of frequency.
Maxwell’s equations include the charge density ρ = e (ni − ne) and the current density
�j= −e (ne�ve − ni�vi) . We will be looking for normal modes of the complete system of
particles plus fields. If we assume that each field has the form �E = �E0e

i(�k·�x−ωt), as usual,
(or equivalently, take the Fourier transform of the equations) then we find:

i�k · �E = ρ

ε0
(1)

�k · �B = 0 (2)

�k × �E = ω �B (3)
and

i�k × �B = µ0�j − i
ω

c2
�E (4)

We also need the equation of motion for the electrons:

m
d�ve
dt

= −e
�
�E + �v × �B

�
which becomes:

−iωm�ve = −e
�
�E + �v × �B

�
(5)

We consider first high frequency waves. (We will see later what "high frequency" means in
this context.) Because of their greater mass, the ions accelerate much more slowly than the
electrons, and do not have time to respond to the wave fields before the fields reverse again.
Thus for high-frequency waves, we may assume that the ions remain at rest:

�vi * 0; ni = n0 = constant
where n0 is the original, uniform, particle number density. Then the current density is due
to the electrons alone:

�j = −nee�ve (6)
and equation (4) becomes:

i�k × �B = µ0 (−nee�ve)−i
ω

c2
�E
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The electron density does not remain constant:
ne (�x, t) = n0 + n1 (�x, t)

where n1 is the perturbation to the electron density. We now assume that the waves have
small amplitude, which means that n1 � n0, v � c, and so on. Thus we will ignore all
products of wave amplitudes in what follows. (We linearize the equations.)

The equation for charge conservation is (Notes 1 eqn 7):
∂ne
∂t

+ �∇ · (ne�ve) = 0
which becomes (ignoring the term in n1�v, which is a product of two small quantities):

−iωn1 + i�k · �ven0 = 0 (7)

Now let’s look for transverse waves
�
�k · �ve = 0

�
. For such waves equation (7) shows

that the electron density perturbation n1 is zero. Thus the right hand side of equation (1) is
zero and �E is perpendicular to �k just as in a vacuum, and the waves are transverse in that
sense too. The equation of motion (5) relates the electron velocity to the electric field. For
small amplitude waves, the term in �v × �B is second order, and we neglect it. Then:

−iωm�ve = −e �E
and then the current density (6) is

�j = −n0e e
�E

iωm
= i
n0e

2

ωm
�E = σ �E (8)

The conductivity is imaginary, indicating a 90◦ phase shift between �E and �j. Putting this
result into Ampere’s law (4), we get:

i�k × �B =
1

c2ε0
i
n0e2

ωm
�E − i ω

c2
�E

�k × �B = − ω

c2

�
1− n0e

2

ω2mε0

�
�E (9)

The quantity
n0e

2

ε0m
≡ ω2p,

where ωp is the plasma frequency , the frequency of natural electrostatic oscillations in the
ionized plasma1. Now we may interpret equation (9) in terms of the dielectric constant ε for
the plasma ("brewster" notes eqn 5)

�k × �B = − ω

c2

#
1− ω2p

ω2

$
�E = − ω

c2
ε

ε0
�E

with

ε =

#
1− ω2p

ω2

$
ε0 (10)

Recall that we may express the wave speed in terms of the dielectric constant ("brewster"

1 We’ll veryify this later in these notes. (Pg 7)
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notes eqn 6):

vφ =
ω

k
= c

u
ε0
ε
=

ct
1− ω2p

ω2

(11)

Since ε/ε0 < 1, the wave phase speed is greater than c! This is physically possible, because
the speed at which information travels, the group speed dω/dk, is less than c. Squaring
equation (11), we get

ω2

k2

#
1− ω2p

ω2

$
= c2

ω2 − ω2p = c2k2 (12)
Now we differentiate, to get

2ω
dω

dk
= 2c2k

vg =
dω

dk
=
c2

vφ
(13)

So vg is less than c when vφ is greater than c.
Eqn (12) shows that the wave number k becomes imaginary when ω < ωp and the wave

ceases to propagate. Wave energy is dissipated by the fields as the electrons gain kinetic
energy. The rate of energy dissipation per unit volume is

P = �j · �E
where we have to take the real part before multiplying. Since σ is imaginary (eqn 8), there
is a phase shift of π/2 and so for real k

P (x, t) = Re
�
σ �E
�
· Re

�
�E
�
= Re

�
i |σ| �E

�
·Re

�
�E
�

= − |σ|E0 sin
�
�k · �x− ωt

�
E0 cos

�
�k · �x− ωt

�
= −ω

2
p

ω

ε0E20
2

sin 2
�
�k · �x− ωt

�
Looking at �x = 0 for simplicity:

P (0, t) = ωuE,0
ω2p
ω2
sin 2ωt

where uE,0 = 1
2ε0E

2
0 is the initial energy density. If k is imaginary, we get

P (x, t) = − |σ|E0e−2k̂·�x|k| sin (−ωt)E0 cos (−ωt) = ωuE,0
ω2p
ω2
sin 2ωt at x = 0

In both cases, the energy converted in time t is

E (t) =
] t

0

P (0, t) dt =
uE,0
2

ω2p
ω2
(1− cos 2ωt)

which shows that electric field energy is converted to electron kinetic energy fast enough to
dissipate all the wave energy in less than a quarter of a wave period if ω < ωp. For ω > ωp
the time-averaged energy transfer does not increase with time, and is less than uE,0/2.

The plot shows (E/uE,0)
�
ω2/ω2p

�
= y versus t/T.
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2 Waves in magnetized plasmas

If the plasma is magnetized with a uniform magnetic field �B0, there is an additional term
in the equation of motion:

−iωm�ve = −e
�
�E + �ve × �B0

�
To simplify the solution of this equation for �ve, choose the z−axis along �B0. Then we have:

−iωmvx = −eEx − evyB0
−iωmvy = −eEy + evxB0
−iωmvz = −eEz

and thus solving for the components of �v , we have:

vz = −i e
ωm

Ez (14)

−iωmvx = −eEx − eB0
�−eEy + evxB0

−iωm
�

Write Ω = eB0/m, the cyclotron frequency, to get

−iωmvx = −eEx + iΩ
ω
eEy − iΩ

2

ω
mvx

−iωmvx
�
1− Ω

2

ω2

�
= −e

�
Ex − iΩ

ω
Ey

�
vx = −i e

ωm

�
Ex − iΩωEy

�
1−Ω2/ω2 (15)

and then
vy =

−eEy + Ωmvx
−iωm
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vy = −i e
ωm

%
Ey +

Ωm

−e

#
−i e

ωm

�
Ex − iΩωEy

�
1−Ω2/ω2

$&

= −i e
ωm

�
Ey + i

Ω
ωEx

�
1−Ω2/ω2 (16)

With �j = −n0e�v, (eqn 6), we see that jx is related to both Ex and Ey components. Then �j
is related to �E by the tensor relation:

ji = −n0evi = σijEj

with the conductivity tensor

hσ =
−n0e

�−i e
ωm

�
1−Ω2/ω2

 1 −iΩ/ω 0
iΩ/ω 1 0
0 0 1−Ω2/ω2


=

iε0ω
2
p/ω

1−Ω2/ω2

 1 −iΩ/ω 0
iΩ/ω 1 0
0 0 1−Ω2/ω2

 (17)

Putting this back into Ampere’s law (4), we get the dielectric "constant", which is also now a
rank 2 tensor:

i�k × �B = µ0
↔
σ · �E − i ω

c2
�E = −i ω

c2

↔
ε

ε0
· �E (18)

The dielectric tensor has components

εij = ε0
�
δij + i

µ0
ω
c2σij

�
εij
ε0

= δij +
i

ε0ω

iε0ω2p/ω

1−Ω2/ω2

 1 −iΩ/ω 0
iΩ/ω 1 0
0 0 1−Ω2/ω2


= δij −

ω2p/ω
2

1−Ω2/ω2

 1 −iΩ/ω 0
iΩ/ω 1 0
0 0 1−Ω2/ω2

 (19)

We can tidy this up by rewriting the matrix as 1 −iΩω 0
iΩω 1 0

0 0 1− Ω2ω2

 =

 1 0 0
0 1 0
0 0 1

− 1

ω2

 0 0 0
0 0 0
0 0 Ω2

−iΩ
ω

 0 1 0
−1 0 0
0 0 0


Now define a vector cyclotron frequency:

�Ω =
e

mc
�B0

With our coordinate choice, �Ω has only one component: Ω3. Then we can write the dielectric
tensor in coordinate-free form as:

εij
ε0
= δij −

ω2p
(ω2 −Ω2)

�
δij − ΩiΩj

ω2
− i�ijkΩk

ω

�
(20)

See also Jackson P 7.17.
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2.1 Normal modes

We have now reduced Ampere’s law to the form (18):

�ijnkjBn = − ω

c2
εij
ε0
Ej

Now take �k × (equation 3) and use this result to get:

kikjEj − k2Ei = ω�ijnkjBn = −ω
2

c2
εij
ε0
Ej

or �
εij
ε0
− c

2k2

ω2

�
δij − k̂ik̂j

��
Ej = 0 (21)

This equation has a non-trivial solution for �E only if

det

�
εij
ε0
− c

2k2

ω2

�
δij − k̂ik̂j

��
= 0 (22)

Again, with the z−axis along �B0, and defining the dimensionless quantities:

κ0 ≡ 1−
ω2p
ω2

(23)

κ1 ≡ 1−
ω2p/ω

2

1− Ω2ω2
(24)

and

κ2 ≡
ω2pΩ/ω

3

1− Ω2ω2
(25)

we can write (19) as:

εij
ε0
=

 κ1 iκ2 0
−iκ2 κ1 0
0 0 κ0


Choose coordinate axes so that k̂ lies in the y − z plane:

k̂ =
�
0, sin θ, cos θ

�
Then equation (22) becomes:�������

κ1 − c2k2

ω2 iκ2 0

−iκ2 κ1 − c2k2

ω2

�
1− sin2 θ� c2k2

ω2 sin θ cos θ

0 c2k2

ω2 sin θ cos θ κ0 − c2k2

ω2

�
1− cos2 θ�

������� = 0 (26)

This is the dispersion relation for electromagnetic waves in a magnetized plasma. Rather
than solve this equation in the most general case, we’ll look here at the specific cases of
propagation along and perpendicular to �B0.
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2.2 Propagation along �B0 (θ = 0)

With θ = 0, equation (26) becomes:������
κ1 − c2k2

ω2 iκ2 0

−iκ2 κ1 − c2k2

ω2 0
0 0 κ0

������ = 0%�
κ1 − c

2k2

ω2

�2
− κ22

&
κ0 = 0

Thus either κ0 = 0 , which corresponds to electrostatic (longitudinal) waves at frequency
ω = ωp (eqn 23) (see below), or

κ1 − c
2k2

ω2
= ±κ2 (27)

Substituting in for the κ from (24) and (25), we get the dispersion relation for transverse
waves:

c2k2

ω2
= 1− ω2p

ω2 −Ω2 ∓
ω2pΩ/ω

ω2 −Ω2

= 1− ω2p
ω

(ω ±Ω)
ω2 −Ω2

c2k2

ω2
= 1− ω2p

ω (ω ∓Ω) (28)

There is a resonance (n2 = c2k2/ω2 →∞) when ω → Ω with the upper sign. (More on
this below.)

To show that these are the transverse (electromagnetic waves), let’s solve for the
corresponding electric field vectors. Equation (21) is: κ1 − c2k2

ω2 iκ2 0

−iκ2 κ1 − c2k2

ω2 0
0 0 κ0

 E1
E2
E3

 = 0

Now we use equation (27) to simplify: ±κ2 iκ2 0
−iκ2 ±κ2 0
0 0 κ0

 E1
E2
E3

 = 0

 ±κ2E1 + iκ2E2
−iκ2E1 ± κ2E2

κ0E3

 = 0

The z−component shows that either κ0 = 0 and E3 9= 0, ( �E is parallel to �k, so these are
longitudinal waves2) or if κ0 9= 0, then E3 = 0. This is the transverse wave. In this case,
the x−component gives either κ2 = 0 (which is not possible unless ω →∞) or

E2 = ±iE1
2 When κ0 = 0, the x− and y− components giveE1 = E2 = 0.This result verifies our previous claim about the

meaning of ωp.
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We get the same result from the y−component. These solutions corrrespond to right hand
(upper sign) and left hand (lower sign) circular polarization. (Polarization notes eqn 4.)
Note that the RHC mode (top sign of the pair) corresponds to the resonance in eqn (28). An
electron gyrates counter-clockwise around �B. In this mode, the electric field vector rotates
in the same sense, and at ω = Ω, it also rotates at the same rate. Energy may be transferred
continuously from the fields to the electrons.

The wave ceases to propagate when k2 < 0. k2 = 0 when
c2k2

ω2
= 1− ω2p

ω (ω ∓Ω) = 0
ω2 ∓ ωΩ− ω2p = 0 (29)

ω =
±Ω±

t
Ω2 + 4ω2p

2
Only the + sign on the square root leads to positive frequencies, so

ωR,ωL =

t
Ω2 + 4ω2p ±Ω

2
are the roots for the right and left hand circular polarizations. These frequencies are called
the cut-off frequencies. Thus the dispersion relation is

n2R,L =
(ω − ωR,L) (ω + ωL,R)

ω (ω ∓Ω)
For the LHC mode (lower sign), the denominator is always positive and n2 > 0 for ω > ωL.
For the RHC mode, there is a resonance (k →∞) at ω = Ω. Since ωR > Ω, the square of
the refractive index n2 is positive for ω > ωR or ω < Ω, but is negative for Ω < ω < ωR.

We may plot n2 versus ω/Ω for the two modes in the case Ω = 2ωp.

ωR,L =
Ω

2

�√
1 + 1± 1� = Ω

2

�√
2± 1

�
= 1.207Ω, 0.207Ω

(Black curve LHC, red curve RHC). The frequencies where n2 < 0 are called stop bands,
and the wave does not propagate at these frequencies. Note the resonance at ω = Ω for the
RHC mode. The resonance at ω→ 0 is spurious due to our neglect of ion motion.
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2.3 Propagation of a plane polarized wave along �B0

Since the normal modes are circularly polarized, to understand the propagation of a linearly
polarized wave we must split it up into two circular polarizations. Let’s put the x−axis
along the direction of the linear polarization. Then (polarization notes eqn 4):

�E0 = E0x̂

=
1

2
E0 (x̂+iŷ) +

1

2
E0 (x̂−iŷ)

The two circular polarizations have different phase velocities. Thus, after travelling a
distance z, the wave is described by:

�E =
1

2
E0 (x̂+iŷ) e

ikRz−iωt +
1

2
E0 (x̂−iŷ) eikLz−iωt

where (equation 28):
c2k2R
ω2

= 1− ω2p
ω (ω −Ω) (30)

and
c2k2L
ω2

= 1− ω2p
ω (ω +Ω)

(31)
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At time t, the electric field vector makes an angle φ with the x−axis, where

tanφ =
Ey
Ex

=
Re
�
i
�
eikRz−iωt − eikLz−iωt��

Re (eikRz−iωt + eikLz−iωt)

=
− sin (kRz − ωt) + sin (kLz − ωt)

cos (kRz − ωt) + cos (kLz − ωt)

=
2 cos

�
kL+kR

2 z − ωt
�
sin
�
kL−kR

2 z
�

2 cos
�
kL+kR

2 z − ωt
�
cos
�
kL−kR

2 z
�

= tan

�
kL − kR
2

z

�
Thus:

φ =
kL − kR
2

z ± 2nπ (32)
For high frequency waves, ω  ωp, Ω, we may write equations (30) and (31) in terms of the
small quantities Ω/ω and ωp/ω to get:

kR,L =
ω

c

v
1− ω2p

ω2

�
1∓ Ω

ω

�−1
* ω

c

v
1− ω2p

ω2

�
1± Ω

ω

�
* ω

c

%
1− 1

2

ω2p
ω2

�
1± Ω

ω

�&
and thus

kL − kR = ω

c

ω2p
ω2
Ω

ω
giving

φ =
ω2pΩ

2ω2
z

c

=
z

2cω2
n0e

2

ε0m

eB0
m

=
e3

2 (2π)
2
m2c

n0B0z

ν2
(33)

Thus the direction of polarization rotates as the wave travels. The rotation angle φ is
proportional to the electron density n0,the magnetic field strength B0, the distance travelled
z, and inversely proportional to the square of the frequency ν. This effect is known as
Faraday Rotation, and it offers an important method for measuring magnetic field strength.

2.4 Low frequency waves

When the wave frequency3 ω � Ω,ωp the dispersion relation (28) simplifies:

c2k2

ω2
= 1− ω2p

ω (∓Ω) = 1±
ω2p
ωΩ
≈ ω2p

ωΩ

3 We also needω qΩp =
ne2

ε0Mp
, the ion plasma frequency, to remain in our original "high-frequency" regime

in which ion motion may be ignored.
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Note: only the positive sign (RHC waves) makes sense in this frequency range. With the
minus sign (LHC waves) , k2 < 0 and this mode does not propagate. For RHC waves, we
get:

c2k2

ω2
≈ ω2p

ωΩ

k ≈
u

ω

Ω

ωp
c

(34)

For these waves, the phase speed

vφ =
ω

k
=

√
ωΩ

ωp
c (35)

increases with the frequency ω. Because a signal’s high frequencies will arrive before the
low frequencies, resulting in a declining pitch “whistle”, these waves are called whistlers.

The graph shows the square of the refractive index n versus ω/ωp for the RHC wave in
the case Ω = ωp/2. The Whistler branch is the left (low frequency) side of the upper curve.
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2.5 Propagation perpendicular to �B

We start with the general dispersion relation (26) and this time set θ = π/2, so that the wave
propagates in the y−direction.�������

κ1 − c2k2

ω2 iκ2 0

−iκ2 κ1 − c2k2

ω2

�
1− sin2 θ� c2k2

ω2 sin θ cos θ

0 c2k2

ω2 sin θ cos θ κ0 − c2k2

ω2

�
1− cos2 θ�

������� = 0
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������
κ1 − c2k2

ω2 iκ2 0
−iκ2 κ1 0

0 0 κ0 − c2k2

ω2

������ = 0

�
κ0 − c

2k2

ω2

���
κ1 − c

2k2

ω2

�
κ1 − κ22

�
= 0

One solution is

κ0 =
c2k2

ω2
= 1− ω2p

ω2
This is the same relation (12) that we obtained in the unmagnetized plasma. This wave is
called the ordinary (O-)wave.

The alternative solutions are

κ21 −
c2k2

ω2
κ1 − κ22 = 0

n2 =
c2k2

ω2
= κ1 − κ22

κ1

= 1− ω2p/ω
2

1− Ω2ω2
−
#
ω2pΩ/ω

3

1− Ω2ω2

$2
1

1− ω2p/ω
2

1−Ω2
ω2

Define a new frequency, the upper hybrid frequency, by
ω2H ≡ ω2p +Ω

2

Then

n2 =
c2k2

ω2
= 1− ω2p/ω

2

1− Ω2ω2

%
1 +

ω2pΩ
2/ω4

1− ω2H
ω2

&

= 1− ω2p
(ω2 − ω2H)

%
ω2 − ω2H + ω2pΩ

2/ω2

ω2 − Ω2
&

= 1− ω2p/ω
2

(ω2 − ω2H)

%�
ω2 − ω2p −Ω2

�
ω2 + ω2pΩ

2

ω2 −Ω2
&

= 1− ω2p
ω2

#
ω2 − ω2p
ω2 − ω2H

$
This is the extra-ordinary (X-)wave. The cut-off frequencies where n = 0 are given by

ω2
�
ω2 − ω2H

�
= ω2p

�
ω2 − ω2p

�
ω4 − ω2ω2H − ω2pω

2 + ω4p = 0

ω4 − ω2Ω2 − 2ω2pω2 + ω4p = 0

ω2 − ω2p = ±ωΩ
This is eqn (29) with solutions

ω =
±Ω±

t
Ω2 + 4ω2p

2
= ωR,ωL
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Now let’s solve for the fields: κ1 − c2k2

ω2 iκ2 0
−iκ2 κ1 0

0 0 κ0 − c2k2

ω2

 E1
E2
E3

 = 0

From the last component, we see that the O-wave has E3 9= 0. The other two components
show that E1 = E2 = 0. In this mode, the electrons ocscillate back and forth along �B, and
the magnetic force plays no role. For the other mode E3 = 0, and the first component gives�

κ1 − c
2k2

ω2

�
E1 + iκ2E2 = 0

or

E2 = − 1

iκ2

�
κ1 − c

2k2

ω2

�
E1

=
iκ2
κ1
E1

and we get the same result from the second component. Since there is an electric field
component (and hence a velocity component) along the direction of propagation (in this
case the y−direction), there is a non-zero charge density (eqn. 7) and this wave is not purely
electromagnetic.

The plot shows n2 for Ω = 2ωp, ωH =
√
5ωp. Note the stop bands for ω < ωL and

ωH < ω < ωR
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For more on wave propagation in plasmas see P 7.17, 18, 25,
http://www.physics.sfsu.edu/~lea/courses/grad/plaswav.PDF, and books on Plasma

Physics.
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