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1 Angular distribution of radiation

The Poynting flux is (radgen notes pg 13)
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all evaluated at the retarded time ret = − The energy radiated per unit solid angle in
the direction n̂ during a time ∆ = 2 + (2) − (1 + (1) ) is:

 =

Z 2+(2)

1+(1)

2 · ̂ 

=

Z 2

1

2 · ̂ 




The integrand 2 · ̂ 


is the energy radiated per unit solid angle per unit time along
the particle’s world line, but measured in the lab frame. We’ll call this  (0) Ω .
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The reduction of the power of
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in the denominator from 6 to 5 is due to a
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transformation of angles in going to the lab frame.

The denominator
³
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´5
makes the power radiated very large in the direction of 

when  ≈ 1

1.1 Acceleration parallel to velocity

Recall that the angular distribution of radiation goes like sin2  in the non-relativistic case.
Thus there is no radiation at all in the direction along the accceleration  In the relativistic
case, the lobes of radiation are ”squashed” in the direction of  Since  ×  = 0

equation (1) simplifies:
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Let’s find the angle at which the radiation peaks.
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The maximum occurs where the derivative is zero:
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which is satisfied for  = 0 or  (which are the minima where the power radiated is zero,
see diagram) or
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This is a quadratic equation for cos  :
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Since the square root is  1 and |cos | ≤ 1 we must take the plus sign:
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Now if  is very close to 1, we can write 2 = 1− 12 and expand:
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Since cos  ≈ 1 then  ¿ 1 and we may expand the cosine:

1− 2

2
= 1− 1

82

and thus

 =
1

2
which is the angle of the maxima of the beam shown in the figure above.

1.2 Velocity perpendicular to acceleration

We choose a coordinate system with −axis along  and −axis along


 Then we may

write
̂ = cos ẑ+ sin  (cosx̂+ sinŷ)
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Distribution in the  = 0 plane:
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Again we find that the distribution is strongly peaked toward  ∼ 0 Substitute
2 = 1− 12 and assume  ¿ 1 Then
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In all cases the radiation is beamed along  to within approximately 1

2 The power spectrum

The power radiated per unit solid angle is:



Ω
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where  is evaluated at the retarded time.

The folowing assumptions are justified in any real physical situation:

1.  ()→ 0 as → ±∞
2. The charge moves through a small angle while being observed by a fixed observer a large

distance away.

Then the total energy radiated per unit solid angle is:
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Change variables to 0 = ret = − (0)  Then 0 = 
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First let’s evaluate  (0)  The observation point is at a fixed position 0̂ from the origin,
the radiating charge is at  ()  and ̂ · ̂ = cos Then
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Putting it all together, we have:
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and for any real physical system, we expect  → 0 as → ±∞ so this term is zero. Then:
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We’ll make use of this result in the next section.

3 Synchrotron radiation

3.1 Qualitative discussion

Consider a particle moving along a circular path. The radiation is beamed into a cone of
opening angle ∼ 1 as shown above. Thus an observer at  sees radiation while the
particle is pointed within an angle ∼ 1 of  and thus while the particle travels an arc of
length  ∼ 2


 where  is the radius of the circle. The particle travels this distance in a time

∆ =
2
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Radiation emitted at  at time 1 reaches  , distance  away, at time 1 = 

+ 1

Radiation emitted at  at time 2 = 1 + ∆ = 1 + 2 reaches  at time
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But for an extremely relativistic particle, 0 =  '  so ∆ = 130 Now a pulse
of width ∆ has Fourier components up to at least 1∆ and so the observed frequencies
extend to at least 3 ≡ 30

3.2 Formal treatment

Let the particle’s path be in the − −plane, and let  = 0 when the particle is at the origin.
Then:

 =  [sin0 x̂+(1− cos0) ŷ]
 =  (cos0 x̂+sin0 ŷ)

Let the observer’s direction be in the − −plane at an angle  to the −axis. Then:
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As we saw in the qualitative discussion, the observer will see nothing unless  . 1 ¿ 1

and also 0 . 1 ¿ 1 so we can expand all the sines and cosines to 3rd order in small
quantities. (We have to take the quantity that appears in the exponential to higher order than
the rest of the integrand.)
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Now we assume  À 1 and thus  = 1− 122 and note that 0 =  Then:
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2

Ω
=

22

42

¯̄̄̄Z +∞

−∞
̂×

³
̂× 

´
exp [ (− ̂ · )] 

¯̄̄̄2
=

22

42

¯̄̄̄Z +∞

−∞
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Now recall that the Bessel functions go like − for large  = 
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Spectrum at  = 0
For  ¿  we may use the small argument expansion of the Bessel functions.
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Width of the beam
Let’s define the angular width of the beam at any frequency by the relation
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The beam is a Gaussian.
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4 The integrated spectrum

The total energy radiated per unit frequency is:
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Notice that our angle variable  is the lattitude rather than the usual polar angle, hence the
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At low frequencies the integrand is slowly varying since the Bessel functions go like
small powers of  and thus small powers of the angle  Thus, from equations (6) and (9):
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Here’s what it looks like for  = 2
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and for  = 10 Note that this one is a log/log plot.
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= [cos ẑ+ sin  (cosx̂+ sinŷ)]× 


[(cos  − ) ŷ − sin  sinẑ]

=




∙ − cos  (cos  − ) x̂+sin  cos (cos  − ) ẑ+sin2  cos sinŷ
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