
Jackson notes 2020

1 Spherical multipole moments

Suppose we have a charge distribution ρ (�x) where all of the charge is con-
tained within a spherical region of radius R, as shown in the diagram. Then
there is no charge in the region r > R and so we may write the potential in that
region as a solution of Laplace’s equation in spherical coordinates. With the
constraint that Φ→ 0 as r→∞, we have

Φ (r, θ,φ) =
1

4πε0

∞[
l=0

+l[
m=−l

4π

2l + 1

qlm
rl+1

Ylm (θ,φ) r > R (1)

where the constants 4π/ (2l + 1) have been included for future convenience. We
may also write the potential in terms of the charge density as (Notes 1 eqn.29):

Φ (r, θ,φ) =
1

4πε0

]
ρ (�x3)
|�x− �x3|d

3x3 (2)

and then expand the factor 1/ |�x− �x3| in spherical harmonics using J eqn 3.70
(spherprobnotes eqn 25):

Φ (r, θ,φ) =
1

4πε0

]
ρ (�x3)

∞[
l=0

l[
m=−l

4π

2l + 1

rl<
rl+1>

Ylm (θ,φ)Y
∗
lm

�
θ3,φ3

�
d3x3

=
1

4πε0

∞[
l=0

l[
m=−l

4π

2l + 1
Ylm (θ,φ)

]
ρ (�x3)

rl<
rl+1>

Y ∗lm
�
θ3,φ3

�
d3x3
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The integral is over the entire volume where ρ is not zero, which is inside the
sphere of radius R. Then since r3 ≤ R and r > R, we have r< = r3 and r> = r,
so

Φ (r > R, θ,φ) =
1

4πε0

[
lm

4π

2l+ 1

Ylm (θ,φ)

rl+1

]
ρ (�x3) (r3)l Y ∗lm

�
θ3,φ3

�
d3x3 (3)

and then comparing equations (1) and (3) we find

qlm =

]
ρ (�x3) (r3)l Y ∗lm

�
θ3,φ3

�
d3x3 (4)

These are the spherical multipole moments of the source. With l = 1 we have
the dipole, l = 2 the quadrupole etc.

2 Cartesian multipole moments

This time we expand 1
|�x−�x | in expression (2) in a Taylor series about �x

3 = 0:

Φ (�x) = k

]
ρ (�x3)

1
r
+ �x3 · �∇3 1

R

����
�x =0

+
1

2

3[
i,j=1

x3ix
3
j

∂

∂x3i

∂

∂x3j

1

R

�����
�x =0

+ · · ·
 d3x3

Now let’s evaluate the derivatives:

�∇3 1
R

����
�x =0

=
(�x− �x3)
R3

����
�x =0

=
�x

r3

and

∂

∂x3i

∂

∂x3j

1

R

�����
�x =0

=
∂

∂x3i

�
xj − x3j

�
R3

�����
�x =0

=
−δij
R3

+ 3
(xi − x3i)

�
xj − x3j

�
R5

�����
�x =0

=
−δij
r3

+ 3
xixj
r5

(5)

Putting these expressions back into the Taylor series, we get:

Φ (�x) = k

]
ρ (�x3)

1
r
+ �x3 · �x

r3
+
1

2

[
i,j

x3ix
3
j

�
3
xixj
r5
− δij
r3

�
+ · · ·

d3x3
We may integrate term by term because the Taylor series is uniformly conver-
gent.

Φ (�x) = k

1r
]

ρ (�x3) d3x3 +
�x

r3
·
]

�x3ρ (�x3) d3x3 +
1

2

[
i,j

] �
3
xixj
r5
− δij
r3

�
ρ (�x3)x3ix

3
jd
3x3 + · · ·


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The first two terms may be re-expressed to give:

Φ (�x) = k
q

r
+ k

�p · �x
r3

+
k

r5

[
i,j

] �
3xixj − r2δij

�
ρ (�x3)

x3ix
3
j

2
d3x3 + · · · (6)

where q is the total charge in the distribution and

�p ≡
]

ρ (�x3)�x3 d3x3 (7)

is the Cartesian dipole moment. The last term in (6) needs some work, since
we would like to express the result in terms of the quadrupole tensor, with
components defined as

Qij ≡
]

ρ (�x3)
k
3x3ix

3
j − (r3)2 δij

l
d3x3, (8)

but our integral has unprimed variables where we need primes. However, the
first term in (6) is symmetric in primed and unprimed variables, while the second
is non-zero only if i = j. The second term is:

r2 (x3)2 + r2 (y3)2 + r2 (z3)2 = (r3)2 r2 = (r3)2 x2 + (r3)2 y2 + (r3)2 z2

and so we may interchange prime and unprime and rewrite the integral as:]
ρ (�x3)

[
i,j

x3ix
3
j

�
3xixj − r2δij

�
d3x3 =

[
i,j

xixj

]
ρ (�x3)

�
3x3ix

3
j −

�
r
�2

δij

�
d3x3

=
[
i,j

xixjQij

Thus we have for the potential

Φ (�x) =
1

4πε0

qr + �p · �x
r3

+
1

2

3[
i,j=1

xixj
r5

Qij + · · ·
 (9)

The quadrupole tensor Qij (8) is symmetric, real-valued and traceless. It has
three real eigenvalues.
The total charge is independent of our choice of origin. In general, the

lowest non-zero multipole is independent of origin, but higher order multipoles
do depend on the origin. (See Jackson Problem 4.4.)
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3 Relations between the two sets of multipoles

Comparing the expressions (1) and (9) allows us to relate the two sets of mul-
tipoles. Both expressions are series in increasing powers of 1/r. We’ll need
expressions for the spherical harmonics (Jackson page 109, Lea page 388).
The l = 0 (1/r) term is the monopole term. From equation (4) with

l = m = 0,

q00 =

]
ρ (�x3)Y ∗00

�
θ3,φ3

�
d3x3 =

1√
4π

]
ρ (�x3) d3x3 =

q√
4π

(10)

and the first term in the spherical multipole expansion (1) is

Φ0 =
1

4πε0
4π
q00
r
Y00 =

1

ε0

q√
4π

1

r

1√
4π
=

1

4πε0

q

r

which is also the first term in expression (9).
With l = 1 ( 1/r2 term) there are three contributions, with m = ±1 and

zero. First note that

ql,−m =

]
ρ (�x3) (r3)l Y ∗l−m

�
θ3,φ3

�
d3x3

= (−1)m
]

ρ (�x3) (r3)l Ylm
�
θ3,φ3

�
d3x3

= (−1)m q∗lm (11)

So there are actually only two values to calculate.
With l = 1, m = 0

q10 =

]
ρ (�x3) r3Y ∗10

�
θ3,φ3

�
d3x3

=

]
ρ (�x3) r3

u
3

4π
cos θ3 d3x3

q10 =

u
3

4π

]
ρ (�x3) z3 d3x3 =

u
3

4π
pz (12)

where we used the z−component of (7).
With l = 1, m = 1

q11 =

]
ρ (�x3) r3Y ∗11

�
θ3,φ3

�
d3x3

= −
]

ρ (�x3) r3
u
3

8π
sin θ3e−iφ d3x3

= −
]

ρ (�x3) r3
u
3

8π
sin θ3

�
cosφ3 − i sinφ3� d3x3

= −
u
3

8π

]
ρ (�x3) (x3 − iy3) d3x3

q11 =

u
3

8π
(ipy − px) (13)
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Equivalently,

px = −
u
2π

3
(q11 + q

∗
11) , py =

1

i

u
2π

3
(q11 − q∗11) , pz =

u
4π

3
q10 (14)

The corresponding l = 1 term in the potential (1) is

Φ1 =
1

4πε0

+1[
m=−1

4π

3

q1m
r2
Y1m (θ,φ)

=
1

4πε0r2
4π

3
(q11Y11 (θ,φ) + q10Y10 + q1,−1Y1,−1)

=
1

4πε0r2
4π

3
(q11Y11 (θ,φ) + q10Y10 + (−1) q∗11 (−1)Y ∗11)

=
1

3ε0r2
{2Re [q11Y11 (θ,φ)] + q10Y10}

Inserting our expressions for q1m in terms of the components of �p,we have

Φ1 =
1

3ε0r2

+
2Re

%u
3

8π
(ipy − px)

u
3

8π
(− sin θ) eiφ

&
+

u
3

4π
pz

u
3

4π
cos θ

,

=
1

4πε0r2
(px sin θ cosφ+ py sin θ sinφ+ pz cos θ) =

�p · r̂
4πε0r2

which is the second term in (9). (See also Notes 1 eqn 33.)
With l = 2 (1/r3 term) we have m = 2, 1, and 0. The multipole moment q20

is

q20 =

]
ρ (�x3) (r3)2 Y ∗20

�
θ3,φ3

�
d3x3

=

]
ρ (�x3) (r3)2

1

2

u
5

4π

�
3 cos2 θ3 − 1� d3x3

=
1

2

u
5

4π

]
ρ (�x3)

k
3 (z3)2 − (r3)2

l
d3x3

q20 =
1

2

u
5

4π
Q33 (15)

where we used the (3,3) component of (8). Similarly, we may show that

q21 =
1

3

u
15

8π
(iQ23 −Q13) (16)

and

q22 =
1

12

u
15

2π
(Q11 −Q22 − 2iQ12) (17)

Equivalently:

Q11 −Q22 = Re
#
12

u
2π

15
q22

$
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and so on. We have 3 independent values of q2m, and q21 and q22 each have a
real and imaginary part, giving us 5 real numbers, but there are 6 independent
values Qij in a general symmetric rank 2 tensor. However, in this case the six
values are not all independent as we have the additional constraint that Qij
is traceless, leaving us with 5 independent values. For the extension of this
discussion to higher multipoles, see Jackson Problem 4.3.

4 Example

A ring of charge of radius a carries linear charge density that varies with angle
φ measured around the ring: λ = λ0 cosφ. Let’s find the multipole moments
and the potential for r > a.
The ring is most easily described in spherical coordinates, so let’s first find

the spherical multipoles. With polar axis along the axis of the ring, the charge
density is (Lea Example 6.7)

ρ (�x) =
λ0 cosφ δ (µ) δ (r − a)

r

and thus

qlm =

]
ρ (�x) rlY ∗lm (θ,φ) d

3x

=

]
λ0 cosφ δ (µ) δ (r − a)

r
rlY ∗lm (θ,φ) r

2 dµdφdr

= λ0

v
2l + 1

4π

(l−m)!
(l+m)!

] ∞
0

] 2π

0

] +1

−1
cosφ δ (µ) δ (r − a) rl+1Pml (µ) e−imφ dµdφdr

Using the sifting property, we have immediately

qlm = λ0

v
2l+ 1

4π

(l −m)!
(l +m)!

al+1Pml (0)

] 2π

0

cosφe−imφ dφ

= λ0

v
2l+ 1

4π

(l −m)!
(l +m)!

al+1Pml (0)

] 2π

0

�
eiφ + e−iφ

2

�
e−imφ dφ

The integral over φ is zero unless m = ±1, so

qlm = λ0

v
2l+ 1

4π

(l −m)!
(l +m)!

al+1Pml (0)π (δm1 + δm,−1)

Then

ql,1 = λ0π

u
2l + 1

4π
al+1

v
(l − 1)!
(l + 1)!

P1l (0)

We must have l > 0, since with l = 0 there is no m = 1. We also need l + 1 to
be even so that P 1l (0) is not zero. Thus we have all multipoles of odd order,
and m = 1.
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To find the potential, we use (11):

ql,−1 = −q∗l1
So, since ql1 is real in this case,

ql,−1Yl,−1 = (−1)2 q∗l,1Y ∗l1 = ql,1Y ∗l1
Thus

ql1Yl1 + ql,−1Yl,−1 = ql1 (Yl1 + Y
∗
l1) = 2ql1Re (Yl1)

= 2λ0π

u
2l + 1

4π
al+1

v
(l − 1)!
(l + 1)!

P1l (0)

v
2l + 1

4π

(l− 1)!
(l+ 1)!

P 1l (µ) cosφ

= λ0a
l+1 2l + 1

2

(l − 1)!
(l + 1)!

P 1l (0)P
1
l (µ) cosφ

Thus the potential for r > a is (eqn 1)

Φ =
1

4πε0

∞[
l=1, odd

4π

2l+ 1
λ0
al+1

rl+1
2l + 1

2

(l − 1)!
(l + 1)!

P 1l (0)P
1
l (µ) cosφ

=
λ0
2ε0

∞[
l=1, odd

al+1

rl+1
(l − 1)!
(l + 1)!

P 1l (0)P
1
l (µ) cosφ

=
λ0 cosφ

2ε0

�
a2

r2
1

2
sin θ+

a4

r4
2

4!

3

2

3

2

�
1− 5 cos2 θ� sin θ + · · · �

=
λ0 sin θ cosφ

4ε0

a2

r2

�
1 +

3

8

a2

r2
�
1− 5 cos2 θ�+ · · · �

The dominant term is a dipole, because the ring has zero net charge. Comparing
with (9), we may read off the dipole moment:

�p = πλ0a
2x̂

We may also compute �p using (7).

�p =

] ∞
0

] 2π

0

] +1

−1

λ0 cosφ δ (µ) δ (r − a)
r

r
k
µẑ +

s
1− µ2 (cosφx̂+ sinφŷ)

l
r2drdµdφ

= λ0a
2πx̂

The two results agee.
The next term is the octupole (l = 3) term. The potential has the same

azimuthal dependence (cosφ) as the charge density.
Multipole moments are very important in computing the radiation from a

time-dependent charge distribution. (See Ch 9.)
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5 A surprising result

Let us evaluate the integral: ]
sphere

�E (�x) d3x

where the integral is over a sphere of radius R that contains all the sources of
�E, as shown in the diagram below. We express the electric field in terms of the
potential, and convert to a surface integral:]

sphere

�E (�x) d3x =

]
sphere

−�∇Φ dV = −
L
S

Φn̂ dA = −
L
S

Φn̂R2 dΩ

Insert the integral expression (2) for the potential, and expand 1/|�x − �x3| in
Legendre Polynomials:]

sphere

�E (�x) d3x = −k
L
S

]
all space

ρ (�x3)
|�x− �x3|dV

3n̂R2 dΩ

= −k
L
S

]
all space

ρ (�x3)
∞[
l=0

rl<
rl+1>

Pl (cosγ) dV
3n̂R2 dΩ
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where k = 1/4πε0 and γ is the angle between �x and �x3. Now we interchange
the order of integration, and put the polar axis along the vector �x3, so that the
polar angle is γ. The unit vector n̂ = r̂ depends on the angles, so we write n̂ in
Cartesian components as:

n̂ = x̂ sin γ cosφ+ ŷ sin γ sinφ+ ẑ cos γ

to obtain:]
�E d3x = −k

]
all
space

] 2π

0

] +1

−1
ρ (�x3)

∞[
l=0

rl<
rl+1>

Pl
�
µγ
�
(x̂ sin γ cosφ+ ŷ sinγ sinφ+ ẑ cos γ)R2 dµγdφdV

3

The x−and y−components vanish upon integration over φ, leaving:]
�E d3x = −kẑ

]
all space

2π

] +1

−1
ρ (�x3)

∞[
l=0

rl<
rl+1>

Pl (cos γ) cosγR
2 dµγdV

3

Since cos γ = P1 (cos γ) , orthogonality of the Pl requires that only the l = 1
term survive the integration over γ. Then (Jackson eqn 3.21, Lea 8.33) with
l = 1 gives ]

�E d3x = −kẑ
]
all space

2π
2

3
ρ (�x3)

r<
r2>
R2 dV 3

Now �x is on the surface of the sphere, where |�x| = r = R, and |�x3| = r3 < r
(because all of the charge is inside the sphere). Also, we chose our polar axis
along �x3, so ẑ = r̂3. Thus:]

sphere

�E d3x = −4π
3
k

]
all space

ρ (�x3)
r3

R2
r̂3R2dV 3

= − 1

3ε0

]
all space

ρ (�x3)�x3dV 3 = − �p

3ε0
(18)

where �p is the dipole moment with respect to the center of the sphere (eqn 7). .
This is a completely general result: we did not need to say anything about

the details of the charge distribution.
Now let’s look at the usual expression for the potential due to an ideal

“point” dipole at the origin (Notes 1 eqn 33) :

Φ (�x) = k
�p · �x
r3

The electric field is:

�E = −�∇Φ = −k
�

�p

r3
− 3 �x

r5
�p · �x

�
(19)

(Here we used the expression for �∇
�
�a ·�b

�
from J’s front cover, together with

the fact that �p is a constant vector, �x/r3 = −�∇ (1/r) , and the curl of a gradient
is zero. See also Jackson 4.13.) With this electric field, we have:]

sphere

�E d3x =

]
sphere

−k
�
�p

r3
− 3 �x

r5
(�p · �x)

�
d3x
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Put the polar axis along �p, so that:]
sphere

�E d3x = −
]
sphere

k

�
�p

r3
− 3 r̂

r3
p cos θ

�
r2 drdΩ

Now
r̂ = p̂ cos θ + x̂ sin θ cosφ+ ŷ sin θ sinφ

Again the x− and y−components vanish when we perform the φ−integration.
We do the θ integration next, to get]

sphere

�E d3x = −2πk
] R

0

] +1

−1

�p

r

�
1− 3µ2�dµdr

= −2πk�p
] R

0

1

r

�
µ− µ3���+1−1 dr = 0

How can this be? We should have obtained −k 4π3 �p (equation 18). The problem
is that when we took the derivatives to get the field (eqn. 19), those operations
are not valid at the origin. There is a missing delta-function! You can also
understand this by looking at the field line diagram for a pair of equal and
opposite point charges. As the separation goes to zero, the field lines between
the charges (whose direction is opposite �p) get packed into zero space— the field
becomes infinite!
For consistency, the dipole field must be:

�Edipole = −k
�

�p

r3
− 3 �x

r5
�p · �x

�
− 4π
3
k�pδ (�x) (20)

To see why this result makes sense, let’s look again at the derivative of the
potential:

Φ = k
�p · �x
r3

= −k�p · �∇
�
1

r

�
Thus, with z−axis along �p,

−�∇Φ = k�∇
�
�p · �∇

�
1

r

��
= kp

∂

∂z
�∇
�
1

r

�
We already have the relation

∇2 1
r
= �∇ ·

�
�∇
�
1

r

��
= −4πδ (�x) , (21)

but
∂

∂z
�∇
�
1

r

�
is only one of the three second derivatives in the standard delta-function result
(21), which helps us to understand the factor of 1/3 in equation (20). We can
understand the direction by looking at the field line diagram.
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To understand the magnitude another way, look at the elecric field half way
between two point charges ±q separated by a displacement �d, where �p = q�d.

�E = −2 kq

(d/2)
2 d̂ = −

kq

(d/2)
3
�d

= − k�p

(d/2)
3 = −

4πk

3

�p
4
3π
�
d
2

�3
Now in the limit d → 0 the dipole moment density �p/

�
4π(d/2)3

3

�
→ �pδ (�x) and

so
�E → −4πk

3
�pδ (�x)

which is what we obtained in (20).
We can write our result (20) as a purely mathematical statement:

∂

∂z
�∇
�
1

r

�
= �∇

�
∂

∂z

1

r

�
= −

�
ẑ

r3
− 3 �x

r5
ẑ · �x

�
− 4π
3
δ (�x) ẑ (22)

You’ll need this result in Problem 6.20.

6 Energy

If our charge distribution is now placed in an external field �Eext = −�∇Φext , the
energy of the system is (Notes 2 eqn 3. Do you understand why there is no
factor of 1/2 here?)

U =

]
V

ρ (�x)Φext (�x) d
3�x

where the integral is over a volume V that contains all of the charge. To exhibit
the result in terms of the multipoles of the charge distribution, we expand the
external potential in a Taylor series about the origin1;

U =

]
V

ρ (�x)

�
Φext (0) + �x · �∇Φext

���
0
+
1

2
xixj

∂

∂xi

∂

∂xj
Φext

����
0

+ · · ·
�
d3�x

= qΦext (0)− �p · �Eext (0)− 1
2

∂Eext,j
∂xi

����
0

]
V

ρ (�x)xixj d
3�x+ · · ·

where �p is the dipole moment with respect to the same origin O. We want to
express the third term using the Qij , but we are missing a term. We can add
it in because it is zero! Since the sources of the external field �Eext are not in
the volume V that contains the charge density ρ, then

�∇ · �Eext = 0 in V
1 Summation convention is used in this section.
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Thus
∂Eext,j
∂xi

r2δij =
∂Eext,j
∂xj

r2 = �∇ · �Eextr2 = 0

and so

1

2

∂Eext.j
∂xi

����
0

]
V

ρ (�x)xixj d
3�x =

1

2

∂Eext.j
∂xi

����
0

]
V

ρ (�x)

�
xixj − r

2

3
δij

�
d3�x

=
1

6

∂Eext.j
∂xi

����
0

Qij

Thus

U = qΦext (0)− �p · �Eext (0)− 1
6
Qij

∂Eext.j
∂xi

����
0

+ · · · (23)

The second term shows that a dipole is in stable equilbrium in an external field
when it is aligned parallel to �Eext . (This is the minimum energy state.)
Similar techniques may be used to express the force and torque on a charge

distribution in terms of its multipoles, as in J Problem 4.5.
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