
Waveguide notes 2020

Electromagnetic waves in free space
We start with Maxwell’s equations for an LIH medum in the case that the

source terms ρf and �jf are both zero.

�∇ · �D = �∇ · ε �E = 0 �∇ · �B = 0

�∇× �E = −∂
�B

∂t

�∇× �H =
∂ �D

∂t

Take the curl of Faraday’s law, and then use Ampere’s law:

�∇× �∇× �E = −∂
�∇× �B

∂t
= −µ∂

�∇× �H

∂t

�∇ �∇ · �E −∇2 �E = −µ ∂

∂t

∂ �D

∂t

Use the first Maxwell equation (the "H" in LIH assures us that spatial derivatives
of ε are zero1), and we obtain the wave equation with wave speed vφ = 1/

√
µε

∇2 �E = µε
∂2 �E

∂t2

∂2 �E

∂t2
= v2φ∇2 �E

A similar derivation gives the same equation for �B. Now let’s look at a plane
wave solution:

�E = �E0 exp i�k · �x− iωt
�B = �B0 exp i�k · �x− iωt+ φ

where ω/k = vφ, the wave phase speed. By including the phase constant φ
in the expression for �B we allow for a possible phase shift bewteen �E and �B.
Inserting these expressions into Maxwell’s equations, we have

�∇ · �E = 0⇒ �k · �E0 = 0 (1)
�∇ · �B = 0⇒ �k · �B0 = 0

Thus both �E and �B are perpendicular to the direction of propagation. From
Faraday’s law

�k × �E0 exp i�k · �x− iωt = ω �B0 exp i�k · �x− iωt+ φ

1Here we also assume that ε is independent of t.
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Since this relation must be true for all �x and t, and k is real2, we have φ = 0
(�E and �B oscillate in phase) and

�B0 =
�k

ω
× �E0 =

1

vφ
k̂ × �E0 (2)

Thus �B is also perpendicular to �E, and its magnitude is E/vφ.
If the waves propagate in a vacuum, the derivation goes through in the same

way and the only difference is that the wave speed is c = 1/
√
µ0ε0. In an LIH

medium, vφ = c/n, where the refractive index n = εµ/ε0µ0 * ε/ε0.

Electromagnetic fields in a wave guide
A wave guide is a region with a conducting boundary inside which EM waves

are caused to propagate. In this confined region, the boundary conditions create
constraints on the wave fields. We shall idealize, and assume that the walls are
perfect conductors. If they are not, currents flowing in the walls lead to energy
loss. See Jackson Ch 8 for a discussion of this case, especially sections 1 and 5.

The boundary conditions at the walls of our perfectly conducting guide are
(see notes 1 eqns 10,12,13 and 15):

n̂ · �D = Σ (3)

where Σ is the free surface charge density on the wall,

n̂× �E = 0 (4)

2k is not always real. We will see later some situations where k is complex. In these cases
�E and �B may be out of phase.

2



n̂ · �B = 0 (5)

and
n̂× �H = �K (6)

where �K is the free surface current density. (Note that we have taken �H = 0
inside the conducting material. This is true here because all our fields are
time-dependent, and then non-zero ∂ �B/∂t implies non-zero �E, by Faraday’s
law. Non-zero �E is not allowed inside a perfect conductor, and so �H must be
zero too. ) Since we do not know Σ or �K, equations (4) and (5) will be most
useful.
Now we use cylindrical coordinates with ẑ along the guide in the direction

of wave propagation. The transverse coordinates will be chosen to match the
cross-sectional shape of the guide — Cartesian for a rectangular guide and polar
for a circular guide. Next we assume that all fields may be written in the form

�E = �E0 (�x) e
−iωt

We are not making any special assumptions about the time variation, because
we can always Fourier transform the fields to get combinations of terms of this
form. Then Maxwell’s equations in the guide take the form:

�∇× �E = iω �B

�∇ · �D = 0 �∇ · �B = 0
and

�∇× �H = −iω �D
Taking the curl of Faraday’s law, and inserting �∇× �B from Ampere’s law, we
get:

�∇× �∇× �E = �∇ �∇ · �E −∇2 �E = iω�∇× �B = iω −iωµε�E
∇2 �E = −ω2µε�E (7)

This equation is the same as we obtained for free space. Note that ε is usually
a function of ω.
Next we look for solutions that take the form of waves propagating in the

z−direction, that is:
�E0 (�x) = �Ea (x, y) e

ikz

The wave equation (7) then becomes:

∇2t �E + ω2µε �E − k2 �E = 0 (8)

where ∇2t is the Laplacian operator in the two transverse coordinates (x and y,
or ρ and φ, for example.) Thus equation (8) is an equation for the function �Ea
of the two transverse coordinates.
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Since we were able to simplify the equations by separating the function �E
into its dependence on the coordinates along and transverse to the guide, we
now try to do the same thing with the components. At first glance, and based
on equation (1), you might want to jump to the conclusion that there is no
z−component of a wave propagating in the z−direction, but in general there
is. The waves are propagating between conducting boundaries, and we have to
allow for the possibility that waves travel at an angle to the guide center-line,
and bounce back and forth off the walls as they travel. Since �E is perpendicular
to the wave vector, �E in such a bouncing wave has a z−component. The total
electromagnetic disturbance in the guide is a sum of such waves. The sum is a
combination of waves that interfere constructively. Thus we take

�Ea = Ezẑ + �Et

and similarly
�Ba = Bzẑ + �Bt

This decomposition simplifies the boundary conditions, since the normal n̂ on
the boundary has no z−component. Then eqn (5) becomes

n̂ · �Bt = 0 on S (9)

However equation (4) has two components. The transverse component gives

Ez = 0 on S (10)

while the z− component gives
n̂× �Et = 0 on S (11)

Next we put these components into Maxwell’s equations. The “divergence”
equations are scalar equations, so let’s start with them:

�∇ · �D = 0 = ε
∂Ez
∂z

+ �∇t · �Et

and evaluating the z−derivative, we get

ikEz + �∇t · �Et = 0 (12)

Similarly:

ikBz + �∇t · �Bt = 0 (13)

We separate the curl equations into transverse and z−components. Take the
dot product of Faraday’s law with ẑ:

ẑ · �∇× �E = iωBz = ẑ · �∇t × �Et (14)
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and also the cross product:

ẑ × �∇× �E = ẑ × iω �B

Let’s investigate the triple cross product on the left. Since ẑ is a constant, we
may move it through the ∇ operator in the BAC-CAB rule:

ẑ × �∇× �E = �∇ ẑ · �E − ẑ · �∇ �E = ẑ × iω �Bt

The derivative ∂Ez/∂z times ẑ appears in both terms in the middle, and so
cancels, leaving:

�∇tEz − ∂

∂z
�Et = iωẑ × �Bt

and evaluating the z−derivative, we get
�∇tEz − ik �Et = iωẑ × �Bt (15)

Similarly, from Ampere’s law, we have the transverse component:

�∇tBz − ik �Bt = −iωεµẑ × �Et (16)

and the z−component

−iωεµEz = ẑ · �∇t × �Bt (17)

Equations (12), (13), (17) and (14) show that the longitudinal components
Ez and Bz act as sources of the transverse fields �Bt and �Et .
Now we can simplify by looking at the normal modes of the system.

Transverse Electric (TE) (or magnetic) modes.
In these modes there is no longitudinal component of �E:

Ez ≡ 0 everywhere

Thus boundary condition (10) is automatically satisfied. The remaining bound-
ary conditions are (9) and (11), and we can find the version that we need by
taking the dot product of n̂ with equation (16):

n̂ · �∇tBz − ikn̂ · �Bt = −iωεµn̂ · ẑ × �Et

The second term is zero on S (eqn 9), and we rearrange the triple scalar product
on the right, leaving:

∂Bz
∂n

= iωεµẑ · n̂× �Et = 0 on S (18)

where we used the other boundary condition (11) for �E.
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Transverse Magnetic (TM) (or electric) modes.
In these modes there is no longitudinal component of �B:

Bz ≡ 0 everywhere
Thus the boundary condition (18) is trivially satisfied, and we must impose the
remaining condition (10)

Ez = 0 on S.

Since the Maxwell equations are linear, we can form superpositions of these
two sets of modes to obtain fields in the guide with non-zero longitudinal com-
ponents of both �E and �B. These modes are the result of the constructive inter-
ference mentioned above.
Transverse electromagnetic (TEM) modes
In these modes both Ez and Bz are zero everywhere. Then from (12) and

(14), �∇t × �Et and �∇t · �Et are zero everywhere. This means we can express �Et
as the gradient of a scalar function Φ that satisfies Laplace’s equation in two
dimensions. The boundary condition (11) becomes

n̂× �∇Φ = n̂× ŝ ∂Φ

∂s
= 0 on S

where s is a coordinate parallel to the surface S. Since n̂ and ŝ are perpendicular,
n̂× ŝ is not zero, and so Φ = constant on S and therefore is constant everywhere
inside the volume V, making �Et = 0. Thus these modes cannot exist inside a
hollow guide. They may exist, and in fact become the dominant modes, inside a
guide with a separate inner boundary, like a coaxial cable. We will not consider
them further here.
Now let’s see how the equations simplify for the TE and TM modes..
TM modes
We start by finding an equation for Ez. SinceBz ≡ 0, equation (16) simplifies

to:

−ik �Bt = −iωεµẑ × �Et

�Bt =
ω

k
εµẑ × �Et (19)

and we substitute this result back into equation (15).

−ik �Et + �∇tEz = iωẑ × ω

k
εµẑ × �Et

�∇tEz = ik �Et − iω
2

k
εµ�Et

= ik 1− ω2

k2
εµ �Et (20)

and finally we substitute this result for �Et back into equation (12):

ikEz + �∇t ·
�∇tEz

ik 1− ω2

k2 εµ
= 0

∇2tEz + ω2εµ− k2 Ez = 0
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or
∇2tEz + γ2Ez = 0 (21)

with
γ2 ≡ ω2εµ− k2 (22)

Equation3 (21) is the defining differential equation for Ez. Once we have solved
for Ez, we can find �Et from equation (20) and then �Bt from equation (19).
TE modes
The argument proceeds similarly. We start with equation (15) with Ez = 0,

to get:
�Et = −ω

k
ẑ × �Bt (23)

and substitute into equation (16)

−ik �Bt + �∇tBz = −iωεµẑ × −ω
k
ẑ × �Bt

�∇tBz = i k − ω2εµ

k
�Bt (24)

Then finally from equation (13) we have:

ikBz + �∇t ·
�∇tBz

i k − ω2εµ
k

= 0

∇2tBz + γ2Bz = 0

which is the same differential equation that we found for Ez in the TM modes.
The solutions are different because the boundary conditions are different. Thus
the solution for the two modes proceeds as follows:

TM modes TE modes
assumed Bz ≡ 0 Ez ≡ 0

differential equation ∇2tEz + γ2Ez = 0 ∇2tBz + γ2Bz = 0 This is an eigenvalue/

boundary condition Ez = 0 on S ∂Bz
∂n = 0 on S eigenfunction problem.

next find �Et =
ik
γ2
�∇tEz �Bt =

ik
γ2
�∇tBz

then find �Bt =
ω
k εµẑ × �Et �Et = −ω

k ẑ × �Bt

The differential equation plus boundary condition is an eigenvalue problem
that produces a set of eigenfunctions Ez,n (or Bz,n ) and a set of eigenvalues
γn. The wave number kn is then determined from equation (22):

k2n = ω2εµ− γ2n (25)
3This equation is the Helmholtz equation.
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Clearly if γn is greater than ω
√
εµ = ω/v, where v is the wave phase speed

in unbounded space, kn becomes imaginary and the wave does not propagate.
There is a cut-off frequency for each mode, given by

ωn = γnv

If γc is the lowest eigenvalue for any mode, the corresponding frequency ωc is the
cutoff frequency for the guide, and waves at lower frequencies cannot propagate
in the guide.
A few things to note: the wave number kn is always less than the free-

space value ω/v, and thus the wavelength is always greater than the free-space
wavelength. The phase speed in the waveguide is

vφ =
ω

k
=

1√
µε

1

1− ω2n/ω
2
>

1√
µε
= v

and we can differentiate eqn (25) to get

2ω
dω

dk
εµ = 2k

Then the group speed in the guide is

vg =
dω

dk
=

2k

2ωεµ
=

1

µεvφ
=

1√
µε

1− ω2n
ω2

<
1√
µε
= v

Thus information travels more slowly than if the wave were to propagate in free
space.

TM modes in a rectangular wave guide
We use Cartesian coordinates with origin at one corner of the guide. Let

the guide have dimensions a in the x-direction by b in the y−direction. Let the
interior be full of air so ε/ε0 = µ/µ0 * 1. Then the differential equation for Ez
is (21)

∂2

∂x2
+

∂2

∂y2
+ γ2 Ez = 0

As usual we look for a separated solution, choosing Ez = X (x)Y (y) to obtain:

X33

X
+
Y 33

Y
+ γ2 = 0

Each term must separately be constant, so we have:

X33

X
= −α2

Y 33

Y
= −β2

and
−α2 − β2 + γ2 = 0
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The boundary condition is Ez = 0 on S, so:

X = 0 at x = 0 and x = a

and
Y = 0 at y = 0 and y = b

Thus the appropriate solutions are X = sinαx and Y = sinβy with eigenvalues
chosen to fit the second boundary condition in each coordinate:

α =
nπ

a
and β =

mπ

b

Thus, putting back the dependence on z and t, we have

Ez = Enm sin
nπx

a
sin
mπy

b
eikz−iωt (26)

and

γ2nm =
nπ

a

2

+
mπ

b

2

(27)

Notice that the lowest possible values of n and m are 1 in each case, since taking
m or n = 0 would render Ez identically zero. Thus the lowest eigenvalue is

γ11 = π
1

a2
+
1

b2

and the cutoff frequency for the TM modes is:

ωc,TM = cγ11 = cπ
1

a2
+
1

b2
=
cπ

a
1 +

a2

b2

Jackson solves for the TE modes (pg 361). The eigenvalues are the same,
but in this case it is possible for one (but not both) of m and n to be zero,
leading to a lower cutoff frequency for the TE modes:

ωc,TE =
cπ

max(a, b)

This would be the cutoff frequency for the guide.
In the TM mode, the remaining fields are (eqns 20 and 26):

�Et =
ik

γ2
�∇tEnm sin nπx

a
sin
mπy

b
eikz−iωt

=
ikπ

γ2
Enm

n

a
x̂ cos

nπx

a
sin
mπy

b
+
m

b
ŷ sin

nπx

a
cos

mπy

b
eikz−iωt(28)

and (eqn 19)

�Bt =
ω

kc2
ẑ × ik

γ2
Enm

nπ

a
x̂ cos

nπx

a
sin
mπy

b
+
mπ

b
ŷ sin

nπx

a
cos

mπy

b
eikz−iωt

= i
ω

c2γ2
Enm

nπ

a
ŷ cos

nπx

a
sin
mπy

b
− mπ

b
x̂ sin

nπx

a
cos

mπy

b
eikz−iωt (29)
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where (eqns 25 and 27)

k = ω2εµ− nπ

a

2

− mπ

b

2

As usual, the physical fields are given by the real part of each mathematical
expression, so that, for example, �Et ∝ sin (kz − ωt). You should verify that
these fields satisfy the boundary conditions at x = 0, a and at y = 0, b.

Power
The power transmitted by the waves in the guide is:

�S (t) =
1

µ0
�E × �B

where here we must take the real, physical fields. Usually we are interested in
the time-averaged Poynting flux, which is given by

< �S > =Re
1

2µ0
�E × �B∗ (30)

where the fields on the right are the complex functions we have just found.
Proof of this result:
If �E = �E0e

−iωt = êE0eiφEe−iωt and similarly for �B, where E0 and B0 are
real, then

�S =
1

µ0
Re �E ×Re �B

and the time average is

< �S > = <ê× b̂E0B0
µ0

cos (φE − ωt) cos (φB − ωt) >

= <ê× b̂E0B0
µ0

(cosφE cosωt+ sinφE sinωt) (cosφB cosωt+ sinφB sinωt) >

= ê× b̂E0B0
µ0

cosφE cosφB cos
2 ωt+

(cosφE sinφB + cosφB sinφE) cosωt sinωt+ sinφE sinφB sin
2 ωt

= ê× b̂E0B0
2µ0

(cosφE cosφB + sinφE sinφB) = ê× b̂
E0B0
2µ0

cos (φE − φB)

= Re
1

2µ0
�E × �B∗

so the two results are the same. (See also Notes 2 page 11.)
Using the solution (28, 29), the components of �S in the rectangular guide
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are:

< Sz > = Re
1

2µ0
ExB

∗
y −EyB∗x

= Re
1

2µ0

ik

γ2
Enm (−i) ω

c2γ2
Enm

nπ

a
cos

nπx

a
sin
mπy

b

2

+
mπ

b
sin
nπx

a
cos

mπy

b

2

=
E2nm
2µ0

k

γ4
ω

c2
nπ

a
cos

nπx

a
sin
mπy

b

2

+
mπ

b
sin
nπx

a
cos

mπy

b

2

=
E2nm
2µ0

ω2/c2 − γ2

γ4
ω

c2
nπ

a
cos

nπx

a
sin
mπy

b

2

+
mπ

b
sin
nπx

a
cos

mπy

b

2

=
ε0E

2
nmω

2

ω2

c2 − nπ
a

2 − mπ
b

2

nπ
a

2
+ mπ

b

2 2

nπ

a
cos

nπx

a
sin
mπy

b

2

+
mπ

b
sin
nπx

a
cos

mπy

b

2

Check the dimensions! < Sz > is positive for all values of x and y, showing that
power is propagating continuously along the guide in the positive z-direction.
The transverse component Sx is:

< Sx > = Re
1

2µ0
EyB

∗
z −EzB∗y = Re

1

2µ0
−EzB∗y

= Re
1

2µ0
−E0 sin nπx

a
sin
mπy

b
(−i) ω

c2γ2
E0
nπ

a
cos

nπx

a
sin
mπy

b

= 0

Because there is no real part, the time averaged power flowing across the guide
is zero. Power sloshes back and forth, but there is no net energy transfer.

Fields in a parallel plate wave guide
By simplifying the shape of the guide even more, we can demonstrate how

the wave modes are formed by reflection of waves at the guide walls. Let this
guide exist in the region 0 ≤ y ≤ a, with infinite extent in x. For the TM modes,
the equation to be satisfied is:

∇2t + γ2 Ez = 0

with
Ez = 0 at y = 0 and y = a

Because the region is infinite in the x−direction, the appropriate solution has
no x−dependence:

Ez = En sin
nπy

a
eikz−iωt (31)

with
γn =

nπ

a
Thus the cutoff frequency for these modes is

ωc,TM = γ1c =
πc

a
(32)
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Then the other components of the fields are:

�Et =
ik

γ2
�∇tEz = ik

γ2
nπ

a
En cos

nπy

a
eikz−iωtŷ

=
ika

nπ
En cos

nπy

a
eikz−iωtŷ (33)

and

�Bt =
ω

kc2
ẑ × �Et = − ω

kc2
ika

nπ
En cos

nπy

a
eikz−iωtx̂

= − ω

c2
ia

nπ
En cos

nπy

a
eikz−iωtx̂ (34)

Let’s look at the electric field first. We write the sine and cosine as combi-
nations of complex exponentials. From (31),

Ez = En
eiγy − e−iγy

2i
eikz−iωt = i

γ

γ
En

−eiγy + e−iγy
2

eikz−iωt

and from (33)

Ey =
ik

γ
En

eiγy + e−iγy

2
eikz−iωt

Thus we can write the electric field as a superposition

�En,total =
1

2
�En1 + �En2

where the two superposed fields are

�En1 = i (kŷ − γẑ)
En
γ
exp (ikz + iγy) e−iωt

and
�En2 = i (kŷ + γẑ)

En
γ
exp (ikz − iγy) e−iωt

Similarly:

�Bt = −i ω
c2γ

Enx̂
eiγy + e−iγy

2
eikz−iωt =

1

2
�Bn1 + �Bn2

with
�Bn1,2 = −i ω

γc2
Enx̂ exp [i (kz ± γy)] e−iωt

Now define the four vectors

�u1 = kŷ − γẑ; �u2 = kŷ + γẑ

and
�v1 = γŷ + kẑ; �v2 = −γŷ + kẑ
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Then for i = 1, 2, the vectors are perpendicular:

�ui · �vi = 0
and

�v1 × �u1 = (kẑ + γŷ)× (kŷ − γẑ) = −x̂ γ2 + k2 = −x̂ω
2

c2
= �v2 × �u2

where we used equation (25). The vectors are shown in the diagram below.

The two electric field components are then:

�En1 = i�u1
En
γ
exp (i�v1 · �x) e−iωt and �En2 = i�u2

En
γ
exp (i�v2 · �x) e−iωt

while
�v1 × �En1

ω
= −i ω

γc2
x̂En exp [i (kz + γy)] = �Bn1

consistent with (2) and (34).
Each of these sets of fields (�En1 and �Bn1, �En2 and �Bn2) has the form of

a free-space wave propagating in the direction given by the vectors �v1 and �v2
respectively and with wave number

|�v1| = |�v2| = γ2 + k2 =
ω

c

. These waves are moving across the guide at an angle given by

tan θ =
vy
vz
= ±γ

k
= ± γ

ω2

c2 − γ2

that is, the waves are reflecting off the plates at y = 0, a, as shown in the
diagram. When the angle θ becomes π/2, the wave ceases to propagate along
the guide, but just bounces back and forth, perpendicular to the walls. This
happens when tan θ→∞, or

γ =
ω

c

This gives the cut-off frequency (32) we found before.
See also Lea and Burke pages 1058-1060.
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