
Stellar atmospheres

1 The Eddington approximation and the two­stream model

A stellar atmosphere is a thin region with total depth much less than the stellar radius.
Thus we usually model it as a flat slab. The opical depth is measured vertically downward
from the surface.

Let’s start by looking at a “grey” atmosphere in which α has no frequency dependence.
Then we can drop the subscript ν .

For a ray travelling at angle θ to the normal,

dI

ds
= ¡αI + j

where ds = ¡dz/ cos θ and dτ = αdz. Thus

cos θ
dI

dτ
= I ¡ S

We now define the moments:

mean intensity: J =
1

4π

Z
Id­

Flux: H =
1

4π

Z
Iµd­

radiation pressure K =
1

4π

Z
Iµ2d­

Now we take moments of the radiative transfer equation. First, integrate the equation over
solid angle to obtain:

dH

dτ
= J ¡ S

Next multiply by µ before integrating, to get
dK

dτ
= H

Now in an atmosphere we do not expect any energy generation, and thus H =constant ( and
J = S). . Thus from the last equation,

K = Hτ + constant (1)
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To make further progress, we need to assume something about the angular distribution of
radiation. The simplest model is the two­stream approximation, in which

I =

½
I1 if 0 < θ < π/2 (outgoing radiation)
I2 if π/2 < θ < π (incoming radiation)

Then the moments are

J =
1

2

½Z 1

0

I1dµ +

Z 0

¡1

I2dµ

¾
=

1

2
(I1 + I2)

H =
1

2

½Z 1

0

I1µdµ +

Z 0

¡1

I2µdµ

¾
=

1

4
(I1 ¡ I2)

K =
1

2

½Z 1

0

I1µ
2dµ +

Z 0

¡1

I2µ
2dµ

¾
=

1

3
J

The third relation is not unexpected! This is the Eddington approximation.
At the surface, we have

I2 = 0 at τ = 0
Thus, at τ = 0, J = 2H = 3K. Thus the constant in equation (1) equals 2H/3. Thus

K = H (τ + 2/3)

and
J = H (3τ + 2)

With J = σT 4, this becomes a relation for temperature versus depth:

T 4 =
T 4

e

2

µ
1 +

3

2
τ

¶
(2)

where the effective temperature Te is defined to be the temperature of a surface emitting an
amount of radiation equal to that from the star. The effective temperature equals the actual
temperature at an optical depth τ = 2

3 . Thus we may interpret "the surface" of the star to be
at τ = 2/3.

See R&L p 42­45 for an alternative treatment of this topic.

2 Limb darkening

Using the formal solution of the transfer equation, with τ ! 1 at the bottom of the
atmosphere, and assuming LTE (Sν = Bν (T) ), we have:

Iv (θ, 0) =

Z 1

0

Bν (T (τ)) e¡τν secθdτν sec θ

Now we expand Bν in a Taylor series about the optical depth τ ¤ (unspecified for the
moment):

Bν (T (τ)) = Bν (T (τ ¤)) +
dBν

dτ

¯̄
¯̄
τ¤

(τν ¡ τ¤) + ¢ ¢ ¢
Putting this into the integral, the first term is

Bν (T (τ ¤))
£
¡e¡τν sec θ

¤1
0

= Bν (T (τ ¤))
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In the second term, we integrate by parts:
Z 1

0

(τ ν ¡ τ ¤) e¡τν sec θdτν sec θ = cos θ

Z 1

0

(x ¡ x¤) e¡xdx where x = τ sec θ

= cos θ

·
¡ (x ¡ x¤) e¡x

¯̄1
0

+

Z 1

0

e¡xdx

¸

= cos θ
£
¡τ ¤ sec θ ¡ e¡x

¯̄1
0

¤

= cos θ ¡ τ¤

Thus

Iv (θ, 0) = Bν (T (τ¤)) +
dBν

dτ

¯̄
¯̄
τ¤

(cos θ ¡ τ¤) + ¢ ¢ ¢
If we now choose τ¤ = cos θ, we obtain, correct to 2nd order:

Iv (θ, 0) = Bν (T (τ = cos θ))

Then for θ = 0 (ray from the center of the stellar disk)

Iν (0, 0) ' Bν (T (τ = 1))

while from the limb (θ = π/2)

Iν

³ π

2
, 0

´
' Bν (T (τ = 0))

Since temperature increases inward (equation 2), the intensity is less at the limb. This is the
phenomenon of “limb darkening”.
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