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1 Equilibrium and stability

It seems easy to confine a collisionless plasma: we arrange the geometry so
that the particle drifts are harmless. But collisions give rise to di¤usion which
cause the plasma to escape rapidly. Even ignoring collisions, things may not be
as good as they seem. Random clumps of charge may form ("charge bunch-
ing") creating E-fields and the resulting E-cross-B drifts. Random motions of
charges create fluctuating currents producing magnetic fields, grad-B and cur-
vature drifts. And on and on. We need to analyze the stabilty of each plasma
configuration carefully.

1. First find an equilibrium configuration.
2. Check to make sure it’s a stable equilibrium.
Stable means that small perturbations of the system away from the equilib-

rium state are damped and the system returns to its original state.
Some instabilities are worse than others. "Explosive" instabilities arise when

one disturbance is able to gain energy at the expense of another, and grow
rapidly as a result. (eg plasma oscillations in a drifting plasma where the
fast and slow waves may grow together.) Absolute instability (which involves a
perturbation gowing at one spot) are worse than convective instabilities. Hy-
dromagnetic (low-frequency) instabilities are very destructive to confinement.

It is not always easy to find an equilibrium state.

2 General considerations.

In an equilibrium we may set the explicit time derivative (∂/∂t) terms to zero.
Let’s begin with ~v = 0 and ~g = 0 too. Then the equation of motion (MHD eqn
7) simplifies.

~rP = ~j £ ~B (1)

The pressure gradient force is balanced by Lorentz force on the plasma currents.
Where does the current come from? We can see this by crossing equation (1)
with ~B.

~rP £ ~B

B2
=

³
~j £ ~B

´
£ ~B

B2
= ~j
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Thus ~j is just the diamagnetic current (fluid notes eqn 16) induced by the
pressure gradients themselves.

In the form I labelled Astrophysical MHD, ~j has been eliminated and we
have

~r
µ

P +
B2

2µ0

¶
=

1

µ0

³
~B ¢ ~r

´
~B (2)

If right hand side is zero, magnetic pressure balances gas pressure. Magnetic
field confines the plasma. When the RHS is not zero, field line tension also
contributes to confinement.

These equations show that both ~j and ~B are perpendicular to ~rP : current
flow and field lines lie on constant pressure surfaces, or, put another way, if T
is constant n is constant along field lines.

Examples of equilibrium states:
Earth’s or neutron star’s magnetosphere, solar corona, CNF experiments.
From equation (2), we see that the sum of particle plus magnetic pressures

is constant: as one decreases the other increases. Decrease of B is caused by
diamagnetic currents. The ratio

P

Pm ag
´ β

is a significant indicator of plasma behavior. Most of what we’ve done so far
applies to low-β plasmas (any system with uniform ~B for example). High-β
plasmas occur often in astronomy where β > 1 (eg a cluster of galaxies) and
in CNF (β < 1 but not ¿ 1). But pulsars are very low β because B is so
enormous! We can have regions of very high β locally, but averaged over a finite
region, β is always < 1 for confinement. .

3 An example of equilibrium: The z¡pinch.
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In this configuration, we have a current along the axis of the cylinder, and
magnetic field lines wrap around in the θ direction. The plasma extends from
r = 0 to r = a.¡!

j = jbz, (r < a) ;
¡!
j = 0, (r > a), with no dependence on z, θ.

Assume a steady state. Then the MHD equations give:
MHD eqn 8

¡!
r ¢ (n¡!v ) = 0 =) 1

r

∂

∂r
(rρvr) = 0 (3)

Equation (1)
¡!rP =

¡!
j £ ¡!

B =) ¡jzBθ =
∂P

∂r
(4)

Ohm’s law (MHD eqn 14):

¡!
E + ¡!v £

¡!
B = η

¡!
j +

1

en

³¡!
j £

¡!
B ¡ ¡!r Pe

´
= η

¡!
j +

1

en

³¡!rPi

´
(5)

This has components:

Er ¡ vzBθ =
1

en

µ
∂Pi

∂r

¶
(6)

Eθ = 0 (7)

Ez = ηjz (8)

The z¡component of electric field is needed to drive the current along the axis.
Finally we add Ampere’s law:

¡!r £ ¡!
B = µ0

¡!
j =) 1

r

∂

∂r
(rBθ) = µ0jz (9)

We can integrate this equation if jz is constant for r < a:

Bθ =
µ0

2
jzr r < a (10)

For r > a, the current is zero, so rBθ = constant. Requiring the field to be
continuous at r = a, we have

Bθ =
µ0

2
jz

a2

r
r > a (11)

Next we integrate equation (4) to find P :

¡jzBθ =
∂P

∂r
= ¡jz

³ µ0

2
jzr

´
r < a

= ¡1

2
j2

zµ0r

So:
P = ¡1

4
j2

zµ0r
2 + C r < a (12)
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For r > a, since j = 0, and there is no plasma, P = 0. Thus the constant
C = 1

4 j2
z µ0a

2 and:

P =
1

4
j 2

z µ0

¡
a2 ¡ r2

¢
r < a (13)

Thus we can determine the size of the column in terms of the central pressure
P0 and the current density it carries:

a =

s
P0

µ0

2

jz

(14)

The total current is:

I = πa2jz = π

Ãs
P0

µ0

2

jz

!2

jz = 4π
P0

µ0jz
= 2πa

s
P0

µ0

(15)

Note: for r < a (equations 13 and 10)

P +
B2

µ0

=
1

4
j 2

z µ0

¡
a2 ¡ r2

¢
+

1

µ0

³ µ0

2
jzr

´2

=
1

4
j2
z µ0

¡
a2 ¡ r2

¢
+

1

4
µ0j

2
z r2 =

1

4
j2
z µ0a

2

(16)
which is a constant.

Using ”Astrophysical MHD” , equation (30) in MHD notes, we would find
the gradient of the total (gas plus magnetic) pressure to be:

¡!r
µ

P +
B2

2µ0

¶
=

1

µ0

³¡!
B ¢ ¡!r

´ ¡!
B (17)

Since the only variations are in the radial direction, we have:

∂

∂r

µ
P +

B2

2µ0

¶
br =

1

µ0

Bθ

r

∂

∂θ

³
Bθ

bθ
´

=
1

µ0

B2
θ

r

∂

∂θ

³
bθ
´

= ¡ 1

µ0

B2
θ

r
br (18)

Thus:

P +
B2

2µ0

= ¡ 1

µ0

Z ³µ0

2
jz

´2

rdr = ¡1

4
j2
z µ0

r2

2
+ constant (19)

= ¡ 1

2µ0

³µ0

2
jzr

´2

+ constant = ¡ 1

2µ0

B2
θ + constant (20)

Thus

P +
B2

µ0

= constant (21)

as we obtained above. Thus we see that field line tension helps to confine the
plasma.
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The problem with this configuration is that it is unstable. Suppose we put a
kink in the cylinder. Then at the outside of the kink, the field lines are pushed
apart, which means that the field is weaker. On the inside of the kink the field
lines are closer together, which means the field is stronger. Thus the plasma
drifts outward where there is less confining field, and the kink grows.

Another instability, called the sausage instability, also occurs. Imagine per-
turbing the cyinder as shown below. The same kind of field perturbations occur,
and the sausage gets fatter where it is already fat, and skinnier where it is skinny.
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Another kind of pinch, called the θ¡pinch , may be constructed. In this con-
figuration the magnetic field is along the cylinder and the current is azimuthal.
One of these models may be relevant to astrophysical jets.

A combination of these two ideas, plus rolling the cylinder up into a torus,
gave rise to the tokamak.

4 Accreting neutron star magnetospheres

The accreting plasma exerts a ram pressure that is balanced by magnetic pres-
sure at the magnetosphere boundary:

ρ
³
~v ¢ ~r

´
~v =

1

2
~r

¡
ρv2

¢
¡ v2

2
~rρ ¡ ρ~v £

³
~r £ ~v

´

so our equation of motion, in equilibrium, is:

0 = ~r
µ

P +
ρv2

2
+

B2

2µ0

¶
¡ v2

2
~rρ ¡ 1

µ0

³¡!
B ¢ ¡!r

´ ¡!
B ¡ ρ~v £

³
~r £~v

´

If the flow is irrotational, the last term is zero. ~rρ is ¼ 0 except at the
boundary, where v ! 0, and a similar result holds for B. Thus,integrating
across the magnetopause boundary, we have

P +
ρv2

2
+

B2

2µ0

= constant
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On one side the ram pressure dominates, and on the other the magnetic pressure.
Thus, for a dipole field (recall that the dipole dominates at large distance from
the source)

ρv2

2

¯̄
¯̄
o ut side

=
B2

2µ0

¯̄
¯̄
ins ide

=
B2

¤
2µ0

³r¤
r

´6

(22)

The velocity is almost free-fall

v2 ¼ 2GM¤
r

and the mass accretion rate is

_M = 4πr2ρv

thus

ρv2 =
_M

4πr2

r
2GM¤

r

The gravitational potential energy of the infalling matter is converted to radia-
tion, so the luminosity is

L = _M
GM¤
r¤

=) _M =
Lr¤
GM¤

Thus equation (22) becomes

Lr¤
p

2

4πr5/2
p

GM¤
=

B2
¤

µ0

³r¤
r

´6

and thus the magnetopause radius is given by

r
7/2
M =

B2
¤r5

¤
µ0L

p
GM¤

or

rM =

µ
B2

¤r5
¤

µ0L

¶2/7

(GM¤)
1/7

Using typical values, we get

rM =

¡
108 T

¢4/7 ¡
104 m

¢10/7

³
4π £ 10¡7 N/A2 £ 1030 J/s

´2/7

¡
6.7 £ 10¡11 m3/kg ¢ s2 £ 2 £ 1030 kg

¢1/7

= 1. 885 9 £ 106 T4/7 ¢ m10/7

³
N/A2

´2/7

(J/s)2/7

m3/7

s2/7

= 2 £ 106 (N/A ¢ m)
4/7 ¢ m13/7

³
N/A2

´2/7

(J)2/7
= 2 £ 106 (N)

4/7 ¢ m9/7

(N)
2/7

(N ¢ m)
2/7

= 2 £ 106 m = 2000 km

The stabilty of the magnetosphere was investigated by Arons and Lea. 1976
Astrophysical Journal, 207,914. and 1976 Astrophysical Journal, 210,792
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