Effect of scattering on the emitted spectrum

SM.Lea

Here we are going to consider what happenswhen a system is effected by scattering as
well as emission and absorption. For simplicity we consider a simple model with only one
emission mechanism. Many astrophysicd systems may be understood using this simple
model. Much of the early work was done to understand the spectra of compact x-ray sources
and supernovae.

1 Coherent scattering

Consider a dlab of ionized hydrogen. The emission and absorption is due to
brensstrahlung (free-free), and we also have Thomson scattering. Then:
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where g is the Gaunt factor, and
Qs =NOT

1.1 large cloud, 7, large

1.1.1 low frequency:

At alow enough fregquency, the absorption optical depth will be much larger than the
scattering optical depth, since a,, increases as v decreases. |n thisregime we can ignorethe
effects of scattering, sincer.sy = /7, (7, + 75) ~ 7,. Thus the emitted radiationis a
black body spectrum:
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whichis the Rayleigh-Jeans law.
1.1.2 high frequency

At a high enough frequency, the absorption optical depth becomes small enough that
7, < 7. Then the “skin depth” of the source is approximately [a, (v, + o))~/ and the



emitted spectrum is:
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a”diluted” black body.
If we still have hv < kT in thisregime, then B, ~ v% «, ~ 1/v* and I, ~ v.
Eventually, at higher v, B, ~ e ""/*T and I,, ~ e~ "/*T
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The transition from the low frequency (I, ~ v?) to high frequency (I, ~ v) regimes
occurs where
Tv X Ts
or at afrequency v where

‘ 2 h
(4 x 108 cm5s’3K1/2) S (—V> g~ nor

v3TV/2 \ kT
and so
(4 x 108 cm5s—3K1/2) np, (4 x 108 cm5s—3K1/2) n6.6x 10-27 erg- s
14 = - —
B T35y i T372 (6.6  10-25 cm?) 14 x 10-16 ergK
11 3/2K3/4
- o 3/2 n _17)(10 cm 1/2 1/2
= \/2.9>< 1022 ecm3s—2K T329 = T n'"g

The exact solution that isalso valid at the ’knee” is
I,=B,(1-¢)"?H
wheree = o/ (a5 + ) and H is awesk function of e, varying between 1 and 3.

1.2 Thin slab, 7, < 1 at high frequencies, but 7, > 1.

The slab becomes trang ucent (not transparent) at high ». Photons escape without absorption

for r.pp < 1,01
VT (T, 7s) <1



Since 7, < 74,thisbecomes:
T,Ts <1

The transition occursat 7, ~ 771 at frequency v,
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Note that vp is defined by 7, ~ 75 while v isdefined by 7, ~ 7!, and since
T, ~ v—2 then
v, 1
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or
Vt/l/B ~ Tg
Above v, ,the source isoptically thin and the spectrum isa bremsstrahlung spectrum.
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2 Incoherent scattering
The frequency of the scattered photon may differ from that of the incoming photon if



1. theincoming photon has ahigh frequency (hv > mc?) (Compton scattering) or
2. theelectronisrelativistic, moving withspeed v = Scandlargey = 1/+/1 — v2/c2.

In calculating the frequency of the scattered photon in the second case, we first moveinto
the rest frame of the incoming electron. Inthis frame, the incoming photon is doppler shifted
to a frequency ~ ~yvg, but the frequency shift is probably small (T homson scattering). Then
we shift back to the lab frame, Doppler shifting the frequency by afactor v again.  (For an
exact derivaion of thisresult, see Rybicki and Lightman p 195-199) The net power radiated
by the scattered photons is approximately
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P ~ uppcory

where u,;, = hvgn,, isthe energy density in the photon field. More exactly (R&L egn
7.16a)
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This process is called Inverse Compton Scattering.

In this section we’ll consider how the frequency shifts in each scattering can effect the
emergent spectrum from a source.

2.1 Single scattering

2.1.1 Approximate treatment

(For amore exact analysis, see R& L 8§7.3)

We consider a cloud with aparticledistribution n () particles per unit volume per unit
energy and an incident photon spectrum f (¢) photons per unit volume per unit energy. We
may write an approximate emission coeffident due to scattered photons as:

j(e) = ﬁ/ﬂe’* ve) n(v) f () P (y,¢) dedy

where P (v, ¢) is the power radiated in asingle scattering,

P (y,e) = %coTVﬁQe @

Now we want to do the integral over the electron energy spectrum, so we rewrite the
d0—function as:
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and then after integration we get

ey = 4 [ g 2o lg?
jE) = 4ﬂ/mﬂ(Df(€)3CUT€ﬁ ede

= %/\/%n (@) f(e)B%de
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Now let n () be a power law
n(y) =Ky

/ / P
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wherein the last step | took 3 ~ 1. The limits of the integral are the maximum and minimum
values of the incident spectrum. Thusthe emission coeffident leadsto a power law spectrum
withindex —a=—(p—1) /2.

A more exact analysisgivesamost the sameresult.  There is amultiplicative factor of:
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where A (p)is asowly varying function of p.
p A(p)
0 196
1 133
2 14

and thus the difference between my result and the exact result is afactor of between 0.9
and 1.6.

Theintegral [e(=1)/2f (&) de can be done and givesan analytical closed form solution
when f (¢) is ablack body spectrum, as discussed in R&L (p208) . Theresult is important
when the scattered photons are the microwave BB radiation (cosmic background radiation).

In some sources the photons are also produced within the same source, e.g. by
synchrotronradiation. In thiscasewe have f (¢) ~ ¢ ~“~! (more about this|ater) leading to

j(e") oc g’ =p=1)/2 /s“s_o‘_lds =~V 1n (610 /Emin)

which divergesunless ¢, isfinite.  Thisis alwaysthe case due to rapid radiation |osses
at the high energy end of the electron spectrum.

2.2 Multiple scatterings

2.2.1 Energy change per scattering

The small energy change that occurs in Compton scatering can become important when
multi pl e scatterings occur. we have:




in the electron rest frame. |f we have athermal distribution of electrons, some of them will
have less energy than ¢ and some will have more. The less energetic electrons gain energy
from the photon, but the more energetic el ectrons lose energy to the photon. Averaging over
the entire distribution of dectrons we expect to find:

—_—a—— — 3

in the lab frame. If the system is isolated, it should eventually come to equilibrium at some
temperaure. If the only interaction between photons and matter is scattering (no absorption
and emission) then the equilibrium photon distribution is NOT a black body spectrum, but
rather a“rdativistic Maxwellian”

N (e) o e?e </ kT
For this distribution
~ JeN(e)de [ e/ *T e
[N (e)de  [e2ec/kT(e

<e>
Lettingy = ¢/kT, we get

(kT)" [yPe”vdy
(kT)* [ y?e~vdy

< e >=

Now integrate by parts:
/ yPe Vdy = —y?’efy|§o +/ 3y’e Vdy =/ 3y’e Ydy
0 0 0

and thus
<e>=3kT
Also:
[N (e)de  [ete™/*Tde
[N(e)de — [e2e—s/kTde
Now once equilibrium is established, there is no further net energy transfer between
electrons and photons, so averaging equation 3, we have:

<e?>
— — =0

<e?>= 4 x 3(kT)?

kT
<N > qe— < e >
mc? me

and thus
akT (3kT) — 3x4(kT)’=0=>a =4
So we may rewrite equation 3 as

g
Ne ~ —— (4KT — 4
e = (4KT — <) @
Now we may reinterpret equation 1 for thermal electronswith < 5% >= 3KT /mc? :
4 3kT
< P>= Euphc"TW

kT
2

4

e < &€ > Nppcor
= (average energy shift per scattering) (rate of scattering)

As an aside, we note here tha this scattering process also acts as a heating or coaling
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process for theelectrons.  The heating rate I' may be written as:
€
I'=F(e) NeOT— (e — 4kT)
where F' (¢) is the photon flux to which the electrons are exposed. (If T is negative the

result is anet cooling of the plasma.)

2.2.2 Emergent spectrum

The net change in photon energy due to multiple scatterings is determined using the

Compton"y" parameter:

4kT
y = — max (7,7'2) 5)

= (fractional energy change per scattering) (mean # of scatterings)

where ¢ < 4kT  has been assumed in the interpretation in words, and 7 is the scattering
optical depth.

If absorption is important, we need the number of scatteringswithin one mean free path
of the surface; that is, the“7” that we neediny s

T, = a4 (mfp between emission and absorption)
= Qg [O‘abs (aabs + (;Vs)}_l/2
TS
= (Terr 2 1) (6)
Teff

Emergent spectrum for small 7 Let A bethe amplification factor per scattering. (For
example, A = ~2 for relativistic electrons). Consider an input beam of photons at energy
hv = ¢;. After k scatterings, the incidents photon is scattered to energy

e ~ g AR )
For 7, < 1, the probability of k scatteringsis7*, and so
I(ep)~ Io () TF
and from equation 7,

k- In (e /e;)
~ InA
To proceed, note that
Inbd In
In (alnb/lnc) — n—lna — _CL Inb=In (blna/lnc)
Inc Inc

Sl
FIn(er/ei)/In A _ (5k/5i)lnT/ InA

Since 7 < linthisexanple, itisuseful to definea = —1In7/In A, sothat « > 0. Then the
emitted spectrum has the form:

€ —
I(ek) =~ Io () (8—’“)
i.e. the spectrum is a power law of index «. Notethat this derivaion makes sense only if



A > 1 (egq. scattering off relativistic electrons) Theresult isimportant since so many
astronomical objects have power law spectra over afairly large range of frequencies.
One of the other common models- synchrotron radiation- can run into trouble because

of the “Compton catastrophe”. (Photons are Compton scattered up to higher energy;,
drastically reducing thelifetime of therelativistic electrons, and thus increasing the energy
requirements for the source)

The Kompaneets equation (Reference: Kompaneets, JETP 4, 730, 1957)

In the event tha the amplification factor A is not large, the previous analyis fails. We
must develop amore exact formalism. We derive the Boltzmann equation, which describes
the change in the distribution function n (w) of the photonsin phase space due to scattering
off electrons.

Let n (w) bethe number of photons/cm? /momentum space volume at frequency w.

Let . (p) be the number of electrons/cm?®/momentum space volume d*j at momentum
.

n (w) ischanged because photons are scattered to a new frequency w’.

# scattered outftime = / /fe (P n(w)e(l+n(w)) d—QdQ(f 5

where n (w) c is the photon flux and the factor n (w') is due to induced scattering. (Induced
scattering issimilar to stimulated emission, and occurs because photons are bosons.) The
values of p, w and w’ are related by the physics of the scattering event. Similarly:

# scattered in'time = //f (ﬁl)n(w’)c(un(w))%dgd%ﬁl

The rate of change of n (w) is due to these two processes:
0nd(tw) :C/_dQ [/fe n(w) el +nw))dp — /fe(p)n (W)e(l+nW))d*p
)

To simplify this equation, we make 2 approximations:
1. Electronsare non-relativistic

Ne
fo (p) = ——=——=exp (—p*/2mkT
®) (2 7Tm/~€T)3/2 (v )
and
2. Energy transfer per scattering issmall.
I _
A _ W —w) <1 )
kT
Then we expand n (w’) ina Taylor series:
N on 1 ' 2 0%n
on ,0%n
= n(w )+A8 += Aa =+ -

wherez = Tw/kT.



Now we need to relate p; to p'and A. By conservation of energy:
2 2

AR s
2m A = 2m +
0 2 2 2
LU S VRN VYR RN ) LN (10)
2m 2m 2m
Thus

fe (P1) o exp (—p?/2mk:T) = exp (—p2/2ka) e?
and expanding e” to second order, we get:
fe() = fo (@ (L + A +4%/2)
Then:

fo ()N W) A +n(w) fe () (1 + A+ AQ/Q) (n +An' + AZn”/Q) (1+4n)

= f.(p <n+A (n +n) +%A2 (n" +2n’' +n)> (1+n)
and
1
Fe ) (140 @) = £ @0 (14 0+ o'+ 302" )
In our primary equation 8, we need

and_(tw) _ /—dQ </fe () c(1+nw)dp — /fe(p)n c(l +n(w/))d3ﬁ>

— 49 L[ fe@ (n+ A +n)+$A% (0" + 20/ +n)) (1+n)
- / dQ/d3p[ —fe(@n(1 +n2+An'+é'A2n”) }

/—dQ/d3ﬁfe (7) ((A (n' +n+n?) + %AQ (n'' + (1+n) (n+ 2n’))> )(11)

To proceed further we need A intermsof p. So we use conservaion of momentum. In
the non-relativistic cese:
Tw 4 Tw' .,
—k +p= Tk + D1
where l?:, k' are unit vectors in the d| rection of photon propagation (unit wave vectors).
Then:

Tiw - T - noo- ;
7 = — b+ - ik’zzﬁr—(wk—w'k')
c c c
and )
1 > nooa 3
pi=p’+—= (w2 +w? — 2wk k’) + 2= (wk - w’k') P (12)
c

We userelation 12 to eliminate p; from equation 10:

-y oo -/ . N L
P2—pd 'E'Q- (w2+w’272ww’k~k’) +2%(wk7w’k’) )

T omkT 2mkT
and then using equation 9
Rw' = Rw + AKT



so tofirst order in A :

2220 + 2AKTE — 2%0 (M + AKT)E I + 2 (Mo — (o + ART)F) - 5

A =
2mkT

C

2kt (L k) 20k 0B kTE- K 42 (T (k- K) —akTE) -5

2mkT

kT

_ Jwiw (1—15’-15’)—A(%(l—ﬁ~k')—k’~£> S hew). L

mc2 kT
Callecting terms:
Tiw 7o L, D Tiw Tuw N Y /. . 7

A1 =—(1_-F. ) op ) 2222 (1 _F ) = (k). 2

( +m02< K k) k mc) mc2kT( F k) kT (k k) me

For photons with 7iw < mc? = 511 keV, the bracket on the L HS isapproximately = 1,
and we may ignore the first term on the RHS, to get

A:%(;;/_z;)i:x(/;f_ze)i

mc

mc mc
Now we return to equation 11. The differntial scattering cross section is:
do  3or 9
L2 29 0
70 = Tor (LT e0s0)
where d is the angle between k and k’. Evaluating the A2 term first, we have:
_ [ do 3. 2_/d0 /3_. o P2 (e o\
I _/deQ/d P (9) 0% = | ==dQ | &pf. () * = (k k) cos? €

where ¢ isthe angle between pand &’ — /. We do the integral over p'first, taking ¢ as the
polar anglein a spherical coordinate system, so that

d*p = p*dpsinédéde’ = p*dpdpdd’
where i, =cosS. Then

Net?

~ ~ 2 2
L = 307 - /(1 + cos? 6) (k’—k) sin@d@dd)/ L 5 €XP (—pQ/kaT) depuEdugd¢'

167 (27mkT)>/? m?c

2

~ ~ 2 4 -
_ 39z mer /(1+C0s29) (k’fk) sin9d9dq§/ L exp (—p2/2mkT) dp éug

167 (Qﬂka):‘/Z m2c

2 o]

3o NeX

+1

1

N N\ 2
- / (1 + cos? 6) (kuk) sin 0d0d¢—— ptexp (—p2/2mkT) dp%”

167 (27rka)3/2 m2c® Jg
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Change variablesto v = p?/2mkT Then du = pdp/mkT, and

/ p*exp (—p*/2mkT) dp = / 2mkT)>/? u?/? exp (—u) mkTdu
0 0

1 bl
= 3 (2ka)5/2 / u?? exp (—u) du
0

_ %(zka)S/2 T (5/2)

GRCRCRS

3o Nex?> / 9 LA\ 2
L, = 1 0) (k'—k 0dod —\/ 2mkT)
1 167 (27mkT)>/? (1 +cos?6) ( ) sin ¢ (2m

R A\ 2
_ 3R Tl T /(1 + cos? 0) (k/—k) sin 0dfd¢

167 mc?

Now

5/2 47
3

where )
(1;/71;) :2721A<~l;/:2(17c050)
Meking the usual substitution i = cos @, theintegral is:

. 1
2/(1+u2)(1*u)dud¢ = 4%/ (1—p+p®—p?) du

2 3 4N (+1

ptoow p

= 4 — — — —
T <“ 7 T3 4) »

= Adr <§>
3
and then . 3 kT
I =47 <3) Tor mc2 —_—kTx* = 2n€JT 2 (13)

Next weturn to theterm in A. In principle, we could proceed the same way, but theterm
in (lE’—lE) . p ismuch harder to work with than its squarewas. So instead we use the

method from Kompaneets’ original paper (dso your text, p 215).
First notetha since we are considering scattering only, the total number of photons is
conserved. Thetotal number of quanta is found by integrating the phase space density over

momentum space.
N = / (w) 47T< > —dw /nxde

So the conservation of photon number |sexpressed as
d
dt

nzlder =0
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or, equivalently, 5

z —t—ka(ij):O (14)
where j istheflux of photons in momentum space. (Thisis likethe conservation law for
charge or mass. Interpret z2dx as the volume element dV in spherical coordinates. The
density can change only by flux of partidesinto or out of the volume.) Now we need ;. Note
that inequilibrium j must vanish identically. But we know what n looks like in equilibrium.
Kompaneets just assumed ne to be a Planck funtion, but that’s not quite right. When the
photon number is conserved, the equilibrium distributionis a Bose-Einstein distribution

1

— — 1
neq ea+m _ 1 ( 5)

where « depends on the occupation number N as« o« 1/N. Sowhen the occupation number
issmall o> 1 and
Neg < € "
the Wien law.
Next we write the as-yet-undetermined integral aSneaT;ﬁL-'%L s0 the Boltzmann
egquation becomes:

1 kT
E% = Ne0T— (z?n" 4 22°n’ (1 +n) +n'T+n (1 +n) (2* +1)) (16)
which must look like equation 14:
on y j
—=—j —2= 17
ot J T (17)

and thus j hasthe form:

j=g(@ 0+ h(na)
sotha ;' has aterm inn’” nut no higher derivaives. We can determine the function i by
looking at the equilibrium form (equation 15). For thisfunction:

’ —eaer < 1 4 1) 2 (1 4 )
N = —— [ — Ney = —N n
e (€a+z . 1)2 Neq €q € €q

If j isto be zeroin equilibrium, then h (n,z) = n (1 4+ n) . Now we compare equations 16
and 17 indetail.

i =g (0 +n(l+n)tg (@ +n' (1+n)+nn) =g (" +n1+n))+g (" +n' +2nn)
and so

2
=2 = g 4n) - g+ 2 L (@ 0 (14 n))

X X

2
= - {gn” +n' (g’ +g <1 +2n+—) +n(l+n) (g’ +22))}
X X
Comapring the n”” termsin the two equations:

KT

g = —NeOT O I

mc>
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and comparing the n’ term:

2 kT
g’—l—g(l +2n——> = —n.orc—s (22° (14n) +1) (18)
x me
andthen (1 + n) term:
KT 2 / g
cOpe— N = - 2=
n aTcmC2 (ﬂc + ) (g + m)

kT
= neore—s (22 + 22)
mc

From thislast rdation, we find
I=M4-2)x
You should convince yourself that this dso satisfies the n’ term condition (18).
Noticethat I (theterm in A) givesus the secular change in frequency, which is positive
for 4 > z (4kT > Tiw) and negaivefor 4 < z (4kT < Tw), in agreement with equation 4.
The term in A2 may be thought of asthe random walk changein energy. Thefinal resultis

the Kompaneets equation:
677, kT 1 6 4 ’ 2
B =T 7 g (¢ (W ) )

Itisvalid under the conditions that
1. The eectrons are non-relativistic (7/mc* < 1) and

2. wearein the Thomson limit iw/mc? < 1.

The Kompaneets equation can dways be solved numerically, but afew important cases
canbetreated analytically.

Evolution of total energy If the occupation number is smdl, n < 1, then the
Kompaneets equation (19) can be simplified:

on KT1 0, ,

5 = NeOTCr—s — (z* (n' +n))

The total energy radiaed is:

kT)*

FE = / nmedxélﬂ( 3)

C

where 22dx represents the volume element in momentum space. Then the rate of change of

the energyis:.

OF on (kT)"
—_ [ — A e
57 atx drdm =

Atlow frequendes, x < 1, wealso haven’ ~ n/x > n. Thisis true throughout most of the
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spectrum, and so
o8
ot

(k1)
3

B ET 1 .0 4 3
= /neUTC—m xzax(:ﬁn)x dzdm -

kT) [0
— 7”L80T47r(m03l /E (x4n’) rdx
KT (5 00 [
— neoT47r(mc2l (m‘)n”o —/ x4n'dx>
0

kT 5 o o'}
= neaT47T( i (0 — 1:4n|0 +/ 4$3ndx)
mc 0

kT
= n.orc
mc2

T 48
mc? t,

where t. = 1/n.orc isthe mean time between scatterings. Thus the energy increases
exponentially:

4E

kT t
E(t) = Ey exp (4@15—)

The result is true provided that the input frequencies satisfy Tw/kT < 1. The quantity
inside the exponentid is:
(mean fractional energy change per scattering) x (mean number of scatterings)

Frequency shifts in bremsstrahlung plus scattering. We have previously defined two
significant frequencies: v g and v, such that:
v <vgp optically thick I, « B, o v? in R-Jlimit
V=Vp TB = Ts
vp <v <y I, v
V=1 T =1/7
V> vy opticdly thin, translucent 1, o« exp (—hvkT)

Now we introduce athird frequency v .4, Which definesthe region in which incoherence
isimportant. The definitionis
Y (Veon) =1 (20)
For v > v there are enough scatterings per mfp for a substantial energy shift to occur.
From equation 20,

4kT
27’5 =1 (21)
where (equation 6)

Qg Qg
T = T, . @ ——
Y ay (o, +as) a1+ as/a,

o Qg
“<lfo—=<1
a, a,

Qg Qg
1/—>>1f0r—>>1
ay ay
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Notice that if kT < mc?, we only need to consider the case T4 > 1, which means
as/ay, > 1.

If xeon > 1, then since most photons are produced at =z < 1 < xoh, the impact of
incoherence on the spectrum is minimal and we need not consider it. Thus the interesting
cascehas v < 1.

Recall
as=6.6x10"%n
and
3 n’ hv/kTY .
a, = 4x10 ~Tis (1 e hv/k ) in cgsunits
2
—23 —x
= 4x10 = (1—e)
For z < 1 we may approximate the exponential :
2 2
— —23 _ —23
a, =4x 10 —Ti (z)=4x10 T

Thus .
& o 6.6 x 10™°n 2T1/2 _ 0.0 1651‘2T1/2

@, 4 x1072p2
For afixed n and T, we may write thisas:

2
g T
ay rp

sncea;s/ap =1latx = zp. Then equation 21 becomes:

KT o5
me? o,
ART (e .
=52 -
or 5
me
choh:$3m>>$3

Now as frequency increases above zch, v increases. For y > 1 there will be enough
scatterings for the spectrumto ”saturae” , i.e. we get aWien spectrum, n (z) o e=*. Then

3 3
2hv n(z) = Qh;/ o= g—hv/ kT

I, =
c? c

and the spectrum looks like:
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The height of the peak is determined by the factor e~ (= 25 in this plot) which we have
yet to find.

Total flux: The photons are dl generated by Bremssrahlung, but the energy of each
is increased by scattering. For largey, dmost all the photons end up with an energy near

3kT, so
dE 4y,
v 3k;T/ hu dv

where j, is the emission coefficient for bremsstrahlung, j, o (nz/ﬁ) exp (—hv/kT).
Integrating over v, we find

cff= /47rjud1/ = 60n2kﬁ/h

and so

dE —hv /KT
L, /g(u)exp( LIV

dtdV v
where the amplificationfactor A is

o e 3 ,(2.25
A:3/ g(z)= dx:—1n2<—>
L ooh

T 4 T coh

asdiscovered by Kompaneetsin 1957.

For athin cloud with z; < 1,
dE R

~Udv ar

dE R,
dtdV 4w

while forz; > 1

where R, isdefined by

Tetf (Reyz=3) =1
Since all photons end up around x = 3, that isthe gppropriate frequency at which to
compute the optical depth.

Unsaturated Comptonization Ify 2 1 butzen ~ 1, wedo not get a Wien spectrum.
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We'll look for a steady state solution inthe case that photons are produced by a source
within the cloud and ultimatdy escape after scattering. Thuswe set 9/0t = 0 in equation
19, but add source and sink terms.

KT 10, , )
OZWEO'TCW;% (z* (0 +n+n?) +Q (z) — S ()
In addition, if n < 1, we may neglect the terms in n2 Thesink term S (x) hasthe form
n n n

tescape  Toompt X (number of scatterings)  teomp X max (7, 72)

where tompt = 1/n.0orc isthe mean time between scatterings. Then from the definition of
y (equation 5) we get:

S(z) = NeO TC 74kT2
= nmax(Tﬂ'Q)  me? yneUTc
and the equation becomes:
190, , 4
;a(w (n'—ﬁ—n))—i—q(m)—?:O

where ¢ = Qtcompt.
If the sourceissoft, g () — 0 for z > z,.. Thenfor z; < z < 1 we find
1
and the equation simplifies to
4
220 +dan’ — =_ 0
)
This equation has apower law solution, n o« 2P where

4
p@—D+@—Z:0

with
3 +/9+16/y
B 2
Thereisaparticularly niceresult fory = 1
-3+5
p= =-—4,1

2 )
The positive power is not physically possible, because it implies infinite energy in the
spectrum. Thusthe solution we need is

nocx?

or
F,xz3noca!

Thisis apower law that fitsthe observed spectrum of a number of sources.
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