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SM.Lea

January 2007

When we include magnetic fields in the Vlasov equation several interesting new effects
arise.  These include cyclotron damping and waves at harmonics of w. (the Bernstein

modes).
The Vlasov equation, now with magnetic fieldincluded. is:
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Initially By # 0 but Ey = 0. When we perturb, there are perturbations toboth B and E.
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where df, /dt is the total time denvatlve of f1 taken dong the unperturbed orhit in the
magnetic field B, = Byz. We can find a formal solution for f; by integrating along the
orbit.

t
/ fl”];dt’ fi(t) = fi(to) = /to f% (El + 7 x él) .%dt/ @
The unperturbed trajectory isdescribed by:
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v, () = vy sin[w. (t' —¢) + ¢ (5)

(This works for both signs of charge if we keep the sign of the charge inw..) We can
integrate the z-component directly to get
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while for the  and y componentswe get:
y(t)—y ()= %{sin [we (' —t) 4+ @] — sin ¢} = 1, {sin [(we (t' — t) + @) — sin ¢]}

@)
and similarly for z.
We won’t have time to explore dl the possible waves, so first |et’s look at el ectrostatic



(longitudinal) waves so that El =0and E||E. We also consider propagation across the
magnetic field, in the y—direction, so that
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Then the solution for f; (2) becomes:
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Using expression (7) for y (t'), the exponential is:
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Now let 7 =¢' —t. We have:
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If the wave isdamped, we can takety — oo, with f; (t) — 0 ast — oo to get:
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while for a growing wave, we let ¢, — —oo, with f; (t) — 0 ast — —oo to get:
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We’ll consider the damped wave case (8), but we can get agrowing wave with only minor
changes tothe andysis. Changing varigblesto 7, the integrd becomes
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We can simplify this expression by making use of the generating function for Bessel
functions (see e.g. L ea 8.93 or Jackson problem 3.16c¢)
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Herewe let u = ¢'(“e™+®)  Then

u — i — eiwc(wc7+¢) _ e*iwc(wc7+¢7) = 2¢sin (WCT + QS)
u

Thus
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and so (10) becomes
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Now we expect f, to be afunction of v, and v, so using cylindrical coordinates in the
vel ocity space, we have
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from the cylindrical symmetry, where 6 is the angle that ¥ makeswith the z-axis.  Thus,
(cf egn 4):
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Putting this expression into egn (11) we have:
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We can now do the integration over 7 easily to get:

R0 = B0 5SS ) ) 2 a2
where T

it 1—m) ¢ li(nt Dwe—iw]r  i(n—1-m)¢ li(n—1)we—iw]r |

an =

it Do —o] il Dae—w L,

Since we are considering the damped case (w = w, — #y with v > 0), then

—iwT = —iw,7 —~7 and theintegrated term vanishesas — co.  (Itisstraghtforward to
repea the derivation for the growing wave case v < 0 starting from equation (9) and show
that the end result isthe same.) Then:
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Then we have:
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where we have made use of arecursion reI aion for the Bessel functions (eg equation 3.87 in
Jackson or Lea 8.89). Finally then (12) is:
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Next we use Poisson’s equation:
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The integration over the azimuthal angle @ is essy:
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and thus the double sum collapses leaving:
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Here we wrote the Larmor radius in termsof v, explicitly, sncewe areintegrating over v .
Now we can factor the plasma density from the distribution function to get:
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For aMaxwellian, theintegral over v isstraightforward, leaving
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where 8 = m /KT, and then:
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where then = 0 term gives zero. To do the integral we can use the result (G&R 6.633#2)
validforn > —1
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where I,, is a modified Bessel function. Since J_,, = (=1)"J,,, (J_,)* = J2,
and I_,, = I,, the same result holds for the negative n terms. . Here we have
x=krp =kv, Jw.,,andz/oc = VBv., 0
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Thus:
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where we used the fact that \7, = 1/wf,5. Notice that we can write ¢ as:
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where 7 isthe Larmor radius of a particle moving at the thermal speed v/ kT'/m.Thusthe
dispersionrelation is:
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Now if o islarge (wavelength small compared with the thermal gyro-radius) we may use the
large argument expansion of the Bessel function
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and then the dispersion relation simplifies:
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soask — oo, w — nw,, theharmonics of the cyclotron frequency. For k large but not
infinite and w near nw.., one term dominates and we have;
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The right hand side is positive, so the limit is approached from above.

Now as k — 0, we should use the small argument approximation to the Bessel function:
1

n R = (k—?ﬁi)n (Leaegn 8.101). The exponential in egn (14) is goproximately 1inthis
case. Then (14) becomes:

2,2\ n
K222 _QZ muC 1 (k;‘m) (1—1@21}%—!—---) (16)

w2—nw2n'

The sum isdominated by then = 1 term, which gives:
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the upper hybrid frequency.  However, if the frequency is very close to one of the
resonances & w = nw. (other thann = 1), then we cannot ignore theresonant term.  So
again we get w ~ nw.

In more detail, forn # 1 but w ~ nw., wehave including then = 1 tem,
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Generally if w ~ nw,, the lastterm in [ issmall (~ (n + 1)), the right hand side is
positive, and so the limit is approached from above.
With w,, = w., theplot of w versus k looks like this:
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These are the Bernsten modes.

Note to get the plot we used egn( 14) with the Bessel function series eval uated to 10
terms.

First write it in terms of dimensionlessvaiales. y, = (w? — n?w?) /n*w? and
kAp =x,%0 that
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where o = wy, /w.. Thenfor w ~ nw,, (14) becomes:
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The small = limit is dightly different if wyy > 2w.. To investigate this, let
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Let’slook at (16) keeping one more term inthe exponential .
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where we will keep the same order of termsin the exponertial as in the Bessel function.
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If 2 < v < 3, thenwekeepthen = 2 and n = 3 taems, and truncate the first sum a m = 2.
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Since the first term is positive, we still approach the limit from above.
Wealso have, including then = 1 and 2 terms,
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which doesnat goto zero ask — 0. So thereisno limit at w = w.. in this case. However,
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Thus, since vy > 2,
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Thus the plot now lookslike this:
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Reference: Boyd and Sanderson pg 281
See Chenpg 281 for the curvesfor 3 < v < 4.



