Vlasov theory with magnetic effects

S.M.Lea

January 2007

When we include magnetic fields in the Vlasov equation several interesting new effects arise. These include cyclotron damping and waves at harmonics of ω_c (the Bernstein modes).

The Vlasov equation, now with magnetic field included. is:

$$\frac{\partial f}{\partial t} + \vec{v} \cdot \vec{\nabla} f + \frac{q}{m} \left(\vec{E} + \vec{v} \times \vec{B} \right) \cdot \frac{\partial f}{\partial \vec{v}} = 0$$

Initially $\vec{B_0} \neq 0$ but $\vec{E_0} = 0$. When we perturb, there are perturbations to both B and E.

$$\frac{\partial f_1}{\partial t} + \vec{v} \cdot \vec{\nabla} f_1 + \frac{q}{m} \left(\vec{E}_1 + \vec{v} \times \vec{B}_1 \right) \cdot \frac{\partial f_0}{\partial \vec{v}} + \frac{q}{m} \vec{v} \times \vec{B}_0 \cdot \frac{\partial f_1}{\partial \vec{v}} = 0$$

Or, equivalently:

$$\frac{df_1}{dt} = -\frac{q}{m} \left(\vec{E}_1 + \vec{v} \times \vec{B}_1 \right) \cdot \frac{\partial f_0}{\partial \vec{v}}$$
 where df_1/dt is the total time derivative of f_1 taken along the unperturbed orbit in the

where df_1/dt is the total time derivative of f_1 taken along the unperturbed orbit in the magnetic field $\vec{B}_0 = B_0 \hat{\mathbf{z}}$. We can find a formal solution for f_1 by integrating along the orbit

$$\int_{t_0}^{t} \frac{df_1}{dt'} dt' = f_1(t) - f_1(t_0) = \int_{t_0}^{t} -\frac{q}{m} \left(\vec{E}_1 + \vec{v} \times \vec{B}_1 \right) \cdot \frac{\partial f_0}{\partial \vec{v}} dt'$$
 (2)

The unperturbed trajectory is described by:

$$v_z(t') = v_z(t) = v_{\parallel} \tag{3}$$

$$v_{u}\left(t'\right) = v_{\perp}\cos\left[\omega_{c}\left(t'-t\right) + \phi\right] \tag{4}$$

and

$$v_x(t') = v_{\perp} \sin\left[\omega_c(t'-t) + \phi\right] \tag{5}$$

(This works for both signs of charge if we keep the sign of the charge in ω_c .) We can integrate the z-component directly to get

$$z(t') - z(t) = v_{\parallel}(t' - t)$$
 (6)

while for the x and y components we get:

$$y(t') - y(t) = \frac{v_{\perp}}{\omega_c} \left\{ \sin\left[\omega_c(t' - t) + \phi\right] - \sin\phi \right\} = r_L \left\{ \sin\left[(\omega_c(t' - t) + \phi) - \sin\phi\right] \right\}$$
(7)

and similarly for x.

We won't have time to explore all the possible waves, so first let's look at electrostatic

(longitudinal) waves so that $\vec{B}_1 \equiv 0$ and $\vec{k} \parallel \vec{E}$. We also consider propagation across the magnetic field, in the y-direction, so that

$$\vec{E} = E_a \exp\left[iky\left(t'\right) - i\omega t'\right] \hat{y}$$

Then the solution for f_1 (2) becomes:

$$f_{1}(t) - f_{1}(t_{0}) = \int_{t_{0}}^{t} -\frac{q}{m} \vec{E}_{1} \cdot \frac{\partial f_{0}}{\partial \vec{v}} dt'$$
$$= -\frac{q}{m} \int_{t_{0}}^{t} \vec{E}_{a} e^{iky(t') - i\omega t'} \cdot \frac{\partial f_{0}}{\partial \vec{v}} dt'$$

Using expression (7) for y(t'), the exponential is:

$$\exp\left(ik\left[r_L\left\{\sin\left(\omega_c\left(t'-t\right)+\phi\right)-\sin\phi\right\}+y\left(t\right)\right]-i\omega t'\right)$$

Now let $\tau = t' - t$. We have:

$$e^{-ikr_L\sin\phi}e^{iky(t)}\exp\left[ikr_L\left\{\sin\left(\omega_c\tau+\phi\right)\right\}-i\omega\left(\tau+t\right)\right]$$

$$=e^{-ikr_L\sin\phi}e^{iky(t)-i\omega t}\exp\left[ikr_L\left\{\sin\left(\omega_c\tau+\phi\right)\right\}-i\omega\tau\right]$$

If the wave is damped, we can take $t_0 \to \infty$, with $f_1(t) \to 0$ as $t \to \infty$ to get:

$$f_1(t) = \int_{-\infty}^{t} -\frac{q}{m} \vec{E}_1 \cdot \frac{\partial f_0}{\partial \vec{v}} dt'$$
 (8)

while for a growing wave, we let $t_0 \to -\infty$, with $f_1(t) \to 0$ as $t \to -\infty$ to get:

$$f_1(t) = \int_{-\infty}^{t} -\frac{q}{m} \vec{E}_1 \cdot \frac{\partial f_0}{\partial \vec{v}} dt' \tag{9}$$

We'll consider the damped wave case (8), but we can get a growing wave with only minor changes to the analysis. Changing variables to τ , the integral becomes

$$f_1(t) = -\frac{q}{m} E_a e^{iky(t) - i\omega t} \int_{-\infty}^{0} e^{-ikr_L \sin \phi} \exp\left[ikr_L \left\{\sin\left(\omega_c \tau + \phi\right)\right\} - i\omega \tau\right] \frac{\partial f_0}{\partial v_y} d\tau \tag{10}$$

We can simplify this expression by making use of the generating function for Bessel functions (see e.g. Lea 8.93 or Jackson problem 3.16c)

$$\exp\left(\frac{kr}{2}\left(u-\frac{1}{u}\right)\right) = \sum_{n=-\infty}^{\infty} u^n J_n(kr)$$

Here we let $u = e^{i(\omega_c \tau + \phi)}$. Then

$$u - \frac{1}{u} = e^{i\omega_c(\omega_c \tau + \phi)} - e^{-i\omega_c(\omega_c \tau + \phi)} = 2i\sin(\omega_c \tau + \phi)$$

Thus

$$\exp\left[ikr_L\sin\left(\omega_c\tau+\phi\right)\right] = \exp\left[\frac{ikr_L}{2i}\left(u-\frac{1}{u}\right)\right] = \sum_{n=-\infty}^{+\infty} \left(e^{i(\omega_c\tau+\phi)}\right)^n J_n\left(kr_L\right)$$

and so (10) becomes

$$f_{1}(t) = -\frac{q}{m} E_{a} e^{iky(t) - i\omega t} \int_{\infty}^{0} \sum_{n = -\infty}^{+\infty} \left(e^{i(\omega_{c}\tau + \phi)} \right)^{n} J_{n}(kr_{L}) \sum_{m = -\infty}^{+\infty} \left(e^{-i\phi} \right)^{m} J_{m}(kr_{L}) e^{-i\omega \tau} \frac{\partial f_{0}}{\partial v_{y}} d\tau$$

$$(11)$$

Now we expect f_0 to be a function of v_{\perp} and v_{\parallel} , so using cylindrical coordinates in the velocity space, we have

$$\vec{\nabla}_{v} f_{0} = \hat{\mathbf{x}} \frac{\partial f_{0}}{\partial v_{x}} + \hat{\mathbf{y}} \frac{\partial f_{0}}{\partial v_{y}} + \hat{\mathbf{z}} \frac{\partial f_{0}}{\partial v_{z}} = \hat{\perp} \frac{\partial f_{0}}{\partial v_{\perp}} + \frac{\hat{\boldsymbol{\theta}}}{v_{\perp}} \frac{\partial f_{0}}{\partial \theta} + \hat{\mathbf{z}} \frac{\partial f_{0}}{\partial v_{z}}$$
$$= (\hat{\mathbf{x}} \cos \theta + \hat{\mathbf{y}} \sin \theta) \frac{\partial f_{0}}{\partial v_{\perp}} + 0 + \hat{\mathbf{z}} \frac{\partial f_{0}}{\partial v_{z}}$$

from the cylindrical symmetry, where θ is the angle that \vec{v} makes with the x-axis. Thus, (cf eqn 4):

$$\frac{\partial f_0}{\partial v_y} = \frac{v_y}{v_\perp} \frac{\partial f_0}{\partial v_\perp} = \cos\left(\omega_c \tau + \phi\right) \frac{\partial f_0}{\partial v_\perp}$$

Putting this expression into eqn (11) we have:

$$f_{1}(t) = -\frac{q}{m} E_{a} e^{iky(t) - i\omega t} \times$$

$$\int_{-\infty}^{0} \sum_{n=-\infty}^{+\infty} \sum_{m=-\infty}^{+\infty} e^{in(\omega_{c}\tau + \phi)} J_{n}(kr_{L}) e^{-im\phi} J_{m}(kr_{L}) e^{-i\omega\tau} \cos(\omega_{c}\tau + \phi) \frac{\partial f_{0}}{\partial v_{\perp}} d\tau$$

$$= -\frac{q}{2m} E_{a} e^{iky(t) - i\omega t} \times$$

$$\int_{-\infty}^{0} \sum_{n=-\infty}^{+\infty} \sum_{m=-\infty}^{+\infty} \left[e^{i(n+1)(\omega_{c}\tau + \phi)} + e^{i(n-1)(\omega_{c}\tau + \phi)} \right] e^{-im\phi} J_{n}(kr_{L}) J_{m}(kr_{L}) e^{-i\omega\tau} \frac{\partial f_{0}}{\partial v_{\perp}} d\tau$$

We can now do the integration over τ easily to get:

$$f_1(t) = -\frac{q}{2m} E_0 e^{iky(t) - i\omega t} \sum_{n=-\infty}^{+\infty} \sum_{m=-\infty}^{+\infty} J_n(kr_L) J_m(kr_L) \frac{\partial f_0}{\partial v_\perp} F_{nm}$$
 (12)

where

$$F_{nm} = \frac{e^{i(n+1-m)\phi}e^{[i(n+1)\omega_c - i\omega]\tau}}{i\left[(n+1)\omega_c - \omega\right]} + \frac{e^{i(n-1-m)\phi}e^{[i(n-1)\omega_c - i\omega]\tau}}{i\left[(n-1)\omega_c - \omega\right]}\bigg|_{\infty}^{0}$$

Since we are considering the damped case ($\omega = \omega_r - i\gamma$ with $\gamma > 0$), then $-i\omega\tau = -i\omega_r\tau - \gamma\tau$ and the integrated term vanishes as $\tau \to \infty$. (It is straightforward to repeat the derivation for the growing wave case $\gamma < 0$ starting from equation (9) and show that the end result is the same.) Then:

$$F_{nm} = e^{-im\phi} \left\{ \frac{e^{i(n+1)\phi}}{i\left[(n+1)\omega_c - \omega\right]} + \frac{e^{i(n-1)\phi}}{i\left[(n-1)\omega_c - \omega\right]} \right\}$$

Then we have:

$$\sum_{n=-\infty}^{+\infty} J_{n}(kr_{L}) F_{nm} = e^{-im\phi} \sum_{n=-\infty}^{+\infty} J_{n}(kr_{L}) \left\{ \frac{e^{i(n+1)\phi}}{i \left[(n+1)\omega_{c} - \omega \right]} + \frac{e^{i(n-1)\phi}}{i \left[(n-1)\omega_{c} - \omega \right]} \right\}$$

$$= e^{-im\phi} \sum_{\nu=-\infty}^{+\infty} \frac{e^{i\nu\phi}}{i \left[\nu\omega_{c} - \omega \right]} \left[J_{\nu-1}(kr_{L}) + J_{\nu+1}(kr_{L}) \right]$$

$$= e^{-im\phi} \sum_{\nu=-\infty}^{+\infty} \frac{e^{i\nu\phi}}{i \left[\nu\omega_{c} - \omega \right]} \frac{2\nu}{kr_{L}} J_{\nu}(kr_{L})$$

where we have made use of a recursion relation for the Bessel functions (eg equation 3.87 in Jackson or Lea 8.89). Finally then (12) is:

$$f_1(t) = -\frac{q}{m} E_a e^{iky(t) - i\omega t} \sum_{n = -\infty}^{+\infty} \sum_{m = -\infty}^{+\infty} \frac{e^{i(n-m)\phi}}{i \left[n\omega_c - \omega\right]} \frac{n\omega_c}{kv_\perp} J_n(kr_L) J_m(kr_L) \frac{\partial f_0}{\partial v_\perp}$$
(13)

Next we use Poisson's equation

$$ikE_1 = \frac{n_1q}{\varepsilon_0} = \frac{q}{\varepsilon_0} \int f_1 dv_{\parallel} v_{\perp} dv_{\perp} d\phi$$

The integration over the azimuthal angle ϕ is easy:

$$\int_0^{2\pi} e^{i(n-m)\phi} d\phi = 2\pi \delta_{nm}$$

and thus the double sum collapses, leaving:

$$ik = -\frac{q^2}{m\varepsilon_0} \int \sum_{n=-\infty}^{+\infty} \frac{2\pi}{i (n\omega_c - \omega)} \frac{n\omega_c}{kv_\perp} \left[J_n \left(\frac{kv_\perp}{\omega_c} \right) \right]^2 \frac{\partial f_0}{\partial v_\perp} dv_\parallel v_\perp dv_\perp$$

$$k^2 = 2\pi \frac{q^2}{m\varepsilon_0} \sum_{n=-\infty}^{+\infty} \frac{n\omega_c}{(n\omega_c - \omega)} \int \left[J_n \left(\frac{kv_\perp}{\omega_c} \right) \right]^2 \frac{\partial f_0}{\partial v_\perp} dv_\parallel dv_\perp$$

Here we wrote the Larmor radius in terms of v_{\perp} explicitly, since we are integrating over v_{\perp} . Now we can factor the plasma density from the distribution function to get:

$$k^{2} = 2\pi\omega_{p}^{2} \sum_{n=-\infty}^{+\infty} \frac{n\omega_{c}}{(n\omega_{c} - \omega)} \int \left[J_{n} \left(\frac{kv_{\perp}}{\omega_{c}} \right) \right]^{2} \frac{\partial \hat{f}_{0}}{\partial v_{\perp}} dv_{\parallel} dv_{\perp}$$

For a Maxwellian, the integral over v_{\parallel} is straightforward, leaving

$$\hat{f}_{0,\perp} = \frac{\beta}{2\pi} e^{-\beta v_{\perp}^2/2}$$

$$\frac{\partial \hat{f}_{0,\perp}}{\partial v_{\perp}} = -\beta v_{\perp} \hat{f}_{0,\perp}$$

where $\beta = m/kT$, and then:

$$k^{2} = -\omega_{p}^{2} \sum_{n=-\infty}^{+\infty} \frac{n\omega_{c}}{(n\omega_{c} - \omega)} \int_{0}^{\infty} \left[J_{n} \left(\frac{kv_{\perp}}{\omega_{c}} \right) \right]^{2} \beta^{2} v_{\perp} e^{-\beta v_{\perp}^{2}/2} dv_{\perp}$$

where the n=0 term gives zero. To do the integral we can use the result (G&R 6.633#2) valid for n>-1

$$\int_{0}^{\infty} J_n^2(x) e^{-x^2/2\sigma^2} x dx = \sigma^2 e^{-\sigma^2} I_n\left(\sigma^2\right)$$

where I_n is a modified Bessel function. Since $J_{-n}=(-1)^nJ_n, (J_{-n})^2=J_n^2,$ and $I_{-n}=I_n,$ the same result holds for the negative n terms. . Here we have $x=kr_L=kv_\perp/\omega_c,$ and $x/\sigma=\sqrt{\beta}v_\perp,$ so

$$\sigma = \frac{x}{\sqrt{\beta}v_{\perp}} = \frac{kv_{\perp}/\omega_c}{\sqrt{\beta}v_{\perp}} = \frac{k}{\sqrt{\beta}\omega_c}$$

Thus:

$$k^{2} = -\omega_{p}^{2} \beta \sum_{n=-\infty}^{+\infty} \frac{n\omega_{c}}{[n\omega_{c} - \omega]} \frac{\beta \omega_{c}^{2}}{k^{2}} \int_{0}^{\infty} J_{n}^{2}(x) e^{-x^{2}/2\sigma^{2}} x dx$$
$$= -\frac{1}{\lambda_{D}^{2}} \sum_{n=-\infty}^{+\infty} \frac{n\omega_{c}}{[n\omega_{c} - \omega]} \exp\left(-\frac{k^{2}}{\beta \omega_{c}^{2}}\right) I_{n}\left(\frac{k^{2}}{\beta \omega_{c}^{2}}\right)$$

where we used the fact that $\lambda_D^2 = 1/\omega_p^2 \beta$. Notice that we can write σ as:

$$\sigma = \frac{k}{\sqrt{\beta}\omega_c} = \frac{kv_{\rm th}}{\omega_c} = kr_{\rm th}$$

where r_{th} is the Larmor radius of a particle moving at the thermal speed $\sqrt{kT/m}$. Thus the dispersion relation is:

$$k^{2} = \frac{1}{\lambda_{D}^{2}} \sum_{n=-\infty}^{\infty} \frac{n\omega_{c}}{\left[\omega - n\omega_{c}\right]} \exp\left(-k^{2}r_{\text{th}}^{2}\right) I_{n}\left(k^{2}r_{\text{th}}^{2}\right)$$

$$k^{2}\lambda_{D}^{2} = 2 \sum_{n=1}^{\infty} \frac{\left(n\omega_{c}\right)^{2}}{\omega^{2} - n^{2}\omega_{c}^{2}} \exp\left(-k^{2}r_{\text{th}}^{2}\right) I_{n}\left(k^{2}r_{\text{th}}^{2}\right)$$
(14)

Now if σ is large (wavelength small compared with the thermal gyro-radius) we may use the large argument expansion of the Bessel function

$$I_n\left(\sigma^2\right) \approx \frac{e^{\sigma^2}}{\sqrt{2\pi}\sigma}$$

and then the dispersion relation simplifies:

$$k^{2}\lambda_{D}^{2} = 2\sum_{n=1}^{\infty} \frac{(n\omega_{c})^{2}}{\omega^{2} - n^{2}\omega_{c}^{2}} \frac{1}{\sqrt{2\pi}kr_{\text{th}}}$$

$$\sqrt{\frac{\pi}{2}}k^{3}\lambda_{D}^{2}r_{\text{th}} = \sum_{n=1}^{\infty} \frac{(n\omega_{c})^{2}}{\omega^{2} - n^{2}\omega_{c}^{2}}$$
(15)

so as $k \to \infty$, $\omega \to n\omega_c$, the harmonics of the cyclotron frequency. For k large but not infinite and ω near $n\omega_c$, one term dominates and we have:

$$\omega^2 - (n\omega_c)^2 = \sqrt{\frac{2}{\pi}} \frac{(n\omega_c)^2}{k^3 \lambda_D^2 r_{\text{th}}}$$

The right hand side is positive, so the limit is approached from above.

Now as $k\to 0$, we should use the small argument approximation to the Bessel function: $I_n\approx \frac{1}{n!}\left(\frac{k^2r_{\rm th}^2}{2}\right)^n$ (Lea eqn 8.101). The exponential in eqn (14) is approximately 1 in this case. Then (14) becomes:

$$k^{2}\lambda_{D}^{2} = 2\sum_{n=1}^{\infty} \frac{(n\omega_{c})^{2}}{\omega^{2} - n^{2}\omega_{c}^{2}} \frac{1}{n!} \left(\frac{k^{2}r_{th}^{2}}{2}\right)^{n} \left(1 - k^{2}r_{th}^{2} + \cdots\right)$$
(16)

The sum is dominated by the n=1 term, which gives:

$$\begin{split} \frac{\lambda_D^2}{r_{\rm th}^2} &= \frac{\beta \omega_c^2}{\beta \omega_p^2} = \frac{\omega_c^2}{\omega^2 - \omega_c^2} \\ \frac{1}{\omega_p^2} &= \frac{1}{\omega^2 - \omega_c^2} \\ \omega^2 - \omega_c^2 &= \omega_p^2 \\ \omega^2 &= \omega_p^2 + \omega_c^2 = \omega_{\rm UH}^2 \end{split}$$

the upper hybrid frequency. However, if the frequency is very close to one of the resonances at $\omega=n\omega_c$ (other than n=1), then we cannot ignore the resonant term. So again we get $\omega\approx n\omega_c$.

In more detail, for $n \neq 1$ but $\omega \approx n\omega_c$, we have, including the n=1 term,

$$k^{2}\lambda_{D}^{2} = \frac{\omega_{c}^{2}}{\omega^{2} - \omega_{c}^{2}} + \frac{2(n\omega_{c})^{2}}{\left[\omega^{2} - (n\omega_{c})^{2}\right]} \frac{1}{n!} \left(\frac{k^{2}r_{th}^{2}}{2}\right)^{n}$$

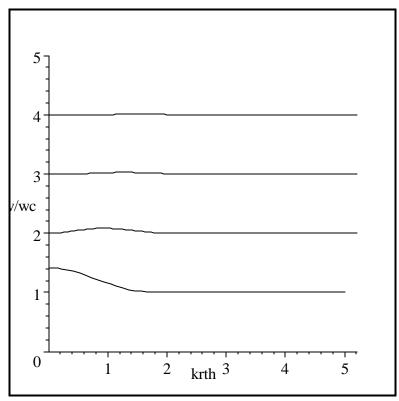
$$\omega^{2} - (n\omega_{c})^{2} = \frac{2(n\omega_{c})^{2}}{k^{2}\lambda_{D}^{2}} \frac{1}{n!} \left(\frac{k^{2}r_{th}^{2}}{2}\right)^{n} + \frac{\omega_{c}^{2}\left[\omega^{2} - (n\omega_{c})^{2}\right]}{\left(\omega^{2} - \omega_{c}^{2}\right)k^{2}\lambda_{D}^{2}}$$

$$= \frac{2(n\omega_{c})^{2}}{k^{2}\lambda_{D}^{2}} \frac{1}{n!} \left(\frac{k^{2}r_{th}^{2}}{2}\right)^{n} + \frac{\omega_{c}^{2}\left[\omega^{2} - \omega_{c}^{2} - (n-1)\omega_{c}^{2}\right]}{\left(\omega^{2} - \omega_{c}^{2}\right)k^{2}\lambda_{D}^{2}}$$

$$= \frac{\omega_{c}^{2}}{k^{2}\lambda_{D}^{2}} \left[1 + \frac{2n}{(n-1)!} \left(\frac{k^{2}r_{th}^{2}}{2}\right)^{n} - \frac{(n-1)\omega_{c}^{2}}{\omega^{2} - \omega_{c}^{2}}\right]$$
(17)

Generally if $\omega \sim n\omega_c$, the last term in [] is small ($\sim (n+1)^{-1}$), the right hand side is positive, and so the limit is approached from above.

With $\omega_p = \omega_c$, the plot of ω versus k looks like this:



These are the Bernstein modes.

Note: to get the plot we used eqn(14) with the Bessel function series evaluated to 10

First write it in terms of dimensionless variables. $y_n = \left(\omega^2 - n^2\omega_c^2\right)/n^2\omega_c^2$ and $k\lambda_D = x$, so that

$$k^2 r_{\rm th}^2 = k^2 \lambda_D^2 \frac{r_{\rm th}^2}{\lambda_D^2} = x^2 \frac{v_{\rm th}^2}{\omega_c^2} \frac{\omega_p^2}{v_{\rm th}^2} = x^2 \alpha^2$$
 where $\alpha = \omega_p/\omega_c$. Then for $\omega \simeq n\omega_c$, (14) becomes:

$$1 = 2\sum_{n=1}^{\infty} \frac{1}{y_n} \frac{\exp\left(-x^2\alpha^2\right) I_n\left(x^2\alpha^2\right)}{x^2} \simeq \frac{2}{y_n} \frac{\exp\left(-x^2\alpha^2\right) I_n\left(x^2\alpha^2\right)}{x^2}$$

The small x $\frac{1}{\text{limit is}}$ slightly different if $\omega_{\text{UH}}>2\omega_c$. To investigate this, let $\omega_{\text{UH}}/\omega_c=\gamma=\sqrt{1+\alpha^2}$

Let's look at (16) keeping one more term in the exponential.

$$\begin{split} k^2 \lambda_D^2 &= 2 \sum_{n=1}^\infty \frac{\left(n\omega_c\right)^2}{\omega^2 - n^2 \omega_c^2} \frac{1}{n!} \left(\frac{k^2 r_{\rm th}^2}{2}\right)^n \left(1 - k^2 r_{\rm th}^2 + \cdots\right) \\ 1 &= \frac{\alpha^2 \omega_c^2}{\omega^2 - \omega_c^2} \left[1 + \sum_{n=2}^\infty \frac{n^2 \left(\omega^2 - \omega_c^2\right)}{\omega^2 - n^2 \omega_c^2} \frac{1}{n!} \left(\frac{k^2 r_{\rm th}^2}{2}\right)^{n-1}\right] \left(1 - k^2 r_{\rm th}^2 + \cdots\right) \\ \omega^2 - \omega_c^2 - \alpha^2 \omega_c^2 &= \alpha^2 \omega_c^2 \left[\sum_{m=1}^\infty \frac{\left(-k^2 r_{\rm th}^2\right)^m}{m!} + \sum_{n=2}^\infty \frac{n \left(\omega^2 - \omega_c^2\right)}{\omega^2 - n^2 \omega_c^2} \frac{1}{(n-1)!} \left(\frac{k^2 r_{\rm th}^2}{2}\right)^{n-1}\right] \\ \omega^2 - \omega_{\rm UH}^2 &= \alpha^2 \omega_c^2 \left[\sum_{m=1}^\infty \frac{\left(-k^2 r_{\rm th}^2\right)^m}{m!} + \sum_{n=2}^\infty \frac{n \left(\omega^2 - \omega_c^2\right)}{\omega^2 - n^2 \omega_c^2} \frac{1}{(n-1)!} \left(\frac{k^2 r_{\rm th}^2}{2}\right)^{n-1}\right] \end{split}$$

where we will keep the same order of terms in the exponential as in the Bessel function.

$$\omega^{2} - \gamma^{2}\omega_{c}^{2} = \alpha^{2}\omega_{c}^{2} \left[\sum_{m=1}^{\infty} \frac{\left(-k^{2}r_{\mathrm{th}}^{2}\right)^{m}}{m!} + \sum_{n=2}^{\infty} \frac{n\left(\omega^{2} - \omega_{c}^{2}\right)}{\omega^{2} - n^{2}\omega_{c}^{2}} \frac{1}{(n-1)!} \left(\frac{k^{2}r_{\mathrm{th}}^{2}}{2}\right)^{n-1} \right]$$

If $2 < \gamma < 3$, then we keep the n = 2 and n = 3 terms, and truncate the first sum at m = 2

$$\begin{split} \omega^2 - \gamma^2 \omega_c^2 &= \alpha^2 \omega_c^2 k^2 r_{\rm th}^2 \left[-1 + \frac{k^2 r_{\rm th}^2}{2} + \frac{\left(\omega^2 - \omega_c^2\right)}{\omega^2 - 4\omega_c^2} + \frac{3\left(\omega^2 - \omega_c^2\right)}{\omega^2 - 9\omega_c^2} \frac{1}{2!} \frac{k^2 r_{\rm th}^2}{4} \right] \\ &= \alpha^2 \omega_c^2 k^2 r_{\rm th}^2 \left[\frac{3\omega_c^2}{\omega^2 - 4\omega_c^2} + \frac{k^2 r_{\rm th}^2}{2} + \frac{3\left(\omega^2 - \omega_c^2\right)}{\omega^2 - 9\omega_c^2} \frac{1}{2!} \frac{k^2 r_{\rm th}^2}{4} \right] \end{split}$$

Since the first term is positive, we still approach the limit from above.

We also have, including the n = 1 and 2 terms,

$$\omega^{2} - \omega_{c}^{2} = \alpha^{2} \omega_{c}^{2} \left[1 - k^{2} r_{th}^{2} + \frac{(\omega^{2} - \omega_{c}^{2})}{\omega^{2} - 4\omega_{c}^{2}} k^{2} r_{th}^{2} \right]$$

$$\simeq \alpha^{2} \omega_{c}^{2} \left\{ 1 + \frac{3\omega_{c}^{2}}{\omega^{2} - 4\omega_{c}^{2}} k^{2} r_{th}^{2} + \cdots \right\}$$

which does not go to zero as $k \to 0$. So there is no limit at $\omega = \omega_c$ in this case. However,

$$= \alpha^2 \omega_c^2 k^2 r_{\rm th}^2 \left[\frac{3\omega_c^2}{\omega^2 - 4\omega_c^2} + \frac{k^2 r_{\rm th}^2}{2} + \frac{3\left(\omega^2 - \omega_c^2\right)}{\omega^2 - 9\omega_c^2} \frac{1}{2!} \frac{k^2 r_{\rm th}^2}{4} \right]$$

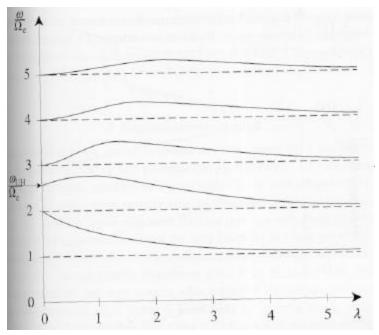
$$\frac{3\omega_c^2}{\omega^2 - 4\omega_c^2} = \frac{\omega^2 - \gamma^2 \omega_c^2}{\alpha^2 \omega_c^2 k^2 r_{\rm th}^2} - \frac{k^2 r_{\rm th}^2}{2} + \frac{3\left(\omega^2 - \omega_c^2\right)}{\omega^2 - 9\omega_c^2} \frac{1}{2!} \frac{k^2 r_{\rm th}^2}{4}$$

$$\to \infty \text{ as } k \to 0$$

Thus, since $\gamma > 2$,

$$\frac{\omega^2 - 4\omega_c^2}{3\omega_c^2} \to \frac{\alpha^2\omega_c^2k^2r_{\text{th}}^2}{\omega^2 - \gamma^2\omega_c^2} \to 0 \text{ from below}$$

Thus the plot now looks like this:



Reference: Boyd and Sanderson pg 281 See Chen pg 281 for the curves for $3<\gamma<4$.