
1 Masers

In thermal equilibrium at any tempertaure, there are always fewer atoms in an
excited state than in the ground state. Masers occur when an external agent
pumps electrons into an excited state, thus inverting the population.

Detailed balance requires that the number of transitions from level 2 to level
1 equal the number of transitions from level 1 to level 2.

N2 (A21 + B21M + C #) = N1 (P + B12M + C ")

where A and B are the Einstein coe¢cients, M is the mean intensity in the
maser transition, the C "# are collisional excitation and de-excitation rates,
and P is the pump rate.To simplify, let’s take C "= C #, and g1 = g2 so that
B12 = B21 = B. Then

N2

N1
=

P + BM + C

A + BM + C
(1)

Now let N = N2 + N1, and N2 = xN. Then

x

1 ¡ x
=

P + BM + C

A + BM + C
) x =

P + BM + C

P + 2BM + 2C + A
(2)

and

¢N = N2 ¡ N1 = N (2x ¡ 1) =
N (P ¡ A)

P + 2BM + 2C + A
(3)

If the pump gets very strong, then ¢N ! N.
The transfer equation is

dIν

d`
= jν ¡ κIν

where

jν = N2A21
hν

4π

and

κν = (N1 ¡ N2)B
hν

4π

So
dIν

d`
= N2A21

hν

4π
¡ (N1 ¡ N2)B

hν

4π
Iν

and

Jν = M =
1

4π

Z
Iν d = fIν

where the factor f = 1 if the radiation is isotropic. Now using our results (2
and3) for the populations, we have

dIν

d`
= N

hν

4π

µ
A

P + BM + C

P + 2BM + 2C + A
+

(P ¡ A) BIν

P + 2BM + 2C + A

¶
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Now assume that the pump is strong (P À A), and we obtain

dIν

d`
= N

hν

4π

µ
BIν

1 + 2C/P + 2BfI/P

¶
+ ε (4)

where

ε = NA
hν

4π

·
1 + C/P + B (f ¡ 1) I/P

1 + (2BfI + 2C )/P

µ
1 ¡ A

1 + (2BfI + 2C )/P

¶

¡ BI/P

1 + 2C/P + 2BfI/P

A

1 + (2BfI + 2C) /P

¸

= NA
hν

4π

"
1 + C/P + B (f ¡ 1) I/P

1 + (2BfI + 2C) /P
¡ A

P

[1 + C/P + B (f ¡ 1) I/P + BI/P ]

[1 + (2BfI + 2C )/P ]
2

#

= NA
hν

4π

"
1 + C/P + B (f ¡ 1) I/P

1 + (2BfI + 2C) /P
¡ A

P

[1 + C/P + BfI/P ]

[1 + (2BfI + 2C) /P ]
2

#

and is much less than the first term, as we show below.
(I used the expansion

1

1 + x + y
=

1

(1 + x)
³
1 + y

1+x

´ =
1

1 + x

µ
1 ¡ y

1 + x

¶

to first order in y, for y ¿ 1)
The equation of transfer (4) is of the form

dIν

d`
= α0

Iν

1 + Iν
Is

+ ε

with

α0 = N
hν

4π

µ
B

1 + 2C/P

¶

and

Is =

µ
P + 2C

2Bf

¶

When I ¿ Is , the intensity grows exponentially:

I +
ε

α0
= I0e

α0`

so the assumption α0I À ε is soon satisfied. In this regime small changes in
gain α0` produce large changes in the intensity, and the intensity is independent
of the pump strength P. We should expect strong variablilty as α0` changes.

But for Iν À Is À ε/α0, Iν grows linearly. The maser saturates. In this
regime small changes in gain produce only small changes in the intensity, and
I / P.
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As Iν approaches Is , we must solve the full equation (neglecting ε), which
takes the form

(1 + y)

y

dy

d`
= α0

with y = I/Is. Integrating, we have

lny + yjyy0
= α0`

ln
Iν

I0
+

Iν ¡ I0

Is
= α0`

Plot for Is/I0 = 10. The plot shows Iv/I0 versus α0`. The red line is the
exponential.
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Notice that the saturation intensity Is increases with the pump strength P.

Let’s look at the emission from a spherical cloud of radius R and uniform
density and temperature. Then a line of sight the through the cloud has path
length

` = 2
p

R2 ¡ d2
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and the intensity is

I (d) / exp(α0l) = exp
³
2α0

p
R2 ¡ d2

´

Near the center of the cloud, d/R ¿ 1,

I (d) / exp

·
2α0R

µ
1 ¡ 1

2

d2

R2

¶¸

= e2α0Re¡α0d2/R

The intensity reaches half its maximum value where

α0d
2/R = ln2 = 0.7

or
d

R
=

p
0.7p
α0R

=
0.8p
α0R

This value is ¿ 1 if the optical depth through the center of the cloud is large.
Thus maser sources appear small on the sky. Thus we may suspect a maser
when (a) the intensity is very large and (b) the source is very small.
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