Radi ation damping, line profiles and Rayleigh
scattering
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1 Radiation damping.

An accelerating particle radiates energy at the rae
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The energy radiated must come from the electron’s kinetic energy, so
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And thusthe time scale for the particle to |ose an appreciable amount of energy is:
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where tp = v/a isacharacteristic time assocuated with the particle’s mation.  (For
circular motion or oscillatory motion, ¢, isapproximately the period.) In thisexpression
the timescale
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where the numerical valueis for an electron.  Heavier particles have smaller values of 7.

Thus the loss timeis in general very long, and the radiation 10ss process is most i mportant
for systems with small values of ¢, (This result is surprisng, perhgps.)
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To find the force that acts on the el ectron to remove energy from it, look at the integrated
energy |oss:
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Integrate by parts:

c

otz ge2d
—/ 2 li v
t

2 2 e2
= P vdt = =—7 - &
/tl ReVEE T 3EY A, 3 e di
1

1

The integrated term is zero if the motion is periodic, and t5 — ¢, is a whole number of
periods, or for circular motion wherev  isperpendicular toa. Then we have:
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Thus it isreasonable to suppose that in atime-averaged sense we may write:
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2 Application to atomic systems

Model an aom as a classical, damped oscillator with natural frequency wq.  Then,
including the radiation damping, the equation of mation for the systemis:
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We expect asolution of the form:
X = X (t) cos (wot)
where the amplitude X, (¢) is aslowly decreasing function of time due to the damping.
Then from eguation 3, we then have
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to zeroth order in the smdl quantity wg7. We only need zeroth order since this derivative
is multiplied by another 7 in equation 3.  So thedifferential equation becomes:
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Now look for asolution of the form:
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We find
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which has the sol utions:
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where
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Thus the solution is a damped osdllation at aZrequency very close to the natural oscillation



frequency. The solution that satisfiestheinitial conditionx =%, att=0is
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X (t) = Xpe cos wot
and itsFourier transformis:
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This function isstrongly peaked around the two values of w = +wy.
Now the energy radiated by the system per unit frequency is.
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for frequencies near wy.  Thereis an equal contribution for frequndes near —wg, which
corresponds to the same real frequency.  Thus, including both contributions, and using
equation 1 we get:
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where we set w ~ w except wherethey are subtracted.  Simplifying, and using equation
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wheretmwizj istheoscillator’senergyatt =0 and ¢ (w) istheLorentz line profile
function that describeshow energy is distributed in frequency.  Notetha:
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where we used the substitution w — wo = (I'/2)tand, and thelower limitis
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3 Scattering by atoms

If the oscillator is now driven by an externdly applied force due to an incoming EM
wave, The equation of motion becomes:
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The expected solution is an oscillation at the same frequency w. So letting X = Re (Xoe'*!)
we find:
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and the radiated power at frequency w is:
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where the phase shift ¢ is given by:
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Now we take the time average to get:
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and the scattering crosssection is:
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Now let’s look at some limits:
For w > wy
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At high frequencies the el ectron ”looks like” a free electron, and the cross section is the
Thomson scattering cross section

For w < wy y
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whichis Rayleigh scattering.



Finally, near the resonance, w ~ wy, we have:
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And we regain the Lorentz line profile. Using our previous result for the inetgral, we get:
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The classical calculation should be modified to allow for quantum mechanical effects by
including the osdlltor strength f : Then

or, equivalently:
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Lorentz profilewithT" = 0.1
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