More on thermal instability

Let the cooling be due to

(1) A line that radiates most at a temperature T_0 .

$$\Lambda_{\text{line}} = n\mathcal{L}_{\text{line}} \sim An \exp\left[-\left(\frac{T}{T_0} - 1\right)^2\right]$$

(2) Bremmsstrahlung

$$\Lambda_{\rm Br} = n \mathcal{L}_{\rm Br} \sim B n^2 T^{1/2}$$

 ${\rm Thus}$

$$\mathcal{L} \sim A \exp\left[-\left(\frac{T}{T_0}-1\right)^2\right] + BnT^{1/2}$$

At constant pressure

$$n = \frac{P}{kT}$$

 \mathbf{So}

$$\mathcal{L} \sim \left\{ A \exp\left[-\left(\frac{T}{T_0} - 1\right)^2 \right] + \left(\frac{P}{kT}\right) BT^{1/2} \right\}$$

This graph shows P versus T at constant \mathcal{L} .

There are three solutions at the same pressure and \mathcal{L} , but only one is stable.

Here's another way to look at it. The red curve is greater \mathcal{L} . In the central region, moving to higher temperature increases the cooling, so the temperature drops again. On the far right, lower temperature gets to a region of more cooling, and the temperature keeps dropping. On the far left, higher temp implies less cooling, and the temp keeps increasing.

At constant entropy:

$$P \sim \rho^{\gamma}$$
 or $T \sim \rho^{\gamma-1} \sim \rho^{2/3}$

 \mathbf{so}

$$n \sim T^{3/2}$$

Thus

$$\mathcal{L} \sim A \exp\left[-\left(\frac{T}{T_0}-1\right)^2\right] + BT^{5/2}$$

 $10\exp\left(-(x-1)^2\right) + x^{5/2}$

