Magnetic vector potential

When we derived the scalar electric potential we started with the relation $\vec{\nabla} \times \vec{E}=0$ to conclude that \vec{E} could be written as the gradient of a scalar potential. That won't work for the magnetic field (except where $\vec{j}=0$), because the curl of \vec{B} is not zero in general. Instead, the divergence of \vec{B} is zero. That means that \vec{B} may be written as the curl of a vector that we shall call \vec{A}.

$$
\vec{B}=\vec{\nabla} \times \vec{A} \Rightarrow \vec{\nabla} \cdot \vec{B}=\vec{\nabla} \cdot(\vec{\nabla} \times \vec{A})=0
$$

Then the second equation becomes

$$
\vec{\nabla} \times \vec{B}=\vec{\nabla} \times(\vec{\nabla} \times \vec{A})=\vec{\nabla}(\vec{\nabla} \cdot \vec{A})-\nabla^{2} \vec{A}=\mu_{0} \vec{j}
$$

We had some flexibility in choosing the scalar potential V because $\vec{E}=-\vec{\nabla} V$ is not changed if we add a constant to V, since $\vec{\nabla}$ (constant) $=0$. Similarly here, if we add to \vec{A} the gradient of a scalar function, $\vec{A}_{2}=\overrightarrow{A_{1}}+\vec{\nabla} \chi$, we have

$$
\vec{B}_{2}=\vec{\nabla} \times \vec{A}_{2}=\vec{\nabla} \times\left(\overrightarrow{A_{1}}+\vec{\nabla} \chi\right)=\vec{\nabla} \times \vec{A}_{1}=\vec{B}_{1}
$$

With this flexibility, we may choose $\vec{\nabla} \cdot \vec{A}=0$. For suppose this is not true. Then

$$
\vec{\nabla} \cdot\left(\vec{A}_{1}+\vec{\nabla} \chi\right)=\vec{\nabla} \cdot \vec{A}_{1}+\nabla^{2} \chi=0
$$

So we have an equation for the function χ

$$
\nabla^{2} \chi=-\vec{\nabla} \cdot \vec{A}_{1}
$$

Once we solve this we will have a vector $\overrightarrow{A_{2}}$ whose divergence is zero. Once we know that we can do this, we may just set $\vec{\nabla} \cdot \vec{A}=0$ from the start. This is called the Coulomb gauge condition. With this choice, the equation for \vec{A} is

$$
\begin{equation*}
\nabla^{2} \vec{A}=-\mu_{0} \vec{j} \tag{1}
\end{equation*}
$$

We may look at this equation one component at a time (provided that we use Cartesian components.) Thus, for the x-component

$$
\nabla^{2} A_{x}=-\mu_{0} j_{x}
$$

This equation has the same form as the equation for V

$$
\nabla^{2} V=-\frac{\rho}{\varepsilon_{0}}
$$

and thus the solution will also have the same form:

$$
A_{x}(\vec{r})=\frac{\mu_{0}}{4 \pi} \int \frac{j_{x}\left(\vec{r}^{\prime}\right)}{R} d \tau^{\prime}
$$

and since we have an identical relation for each component, then

$$
\begin{equation*}
\vec{A}=\frac{\mu_{0}}{4 \pi} \int \frac{\vec{j}\left(\vec{r}^{\prime}\right)}{R} d \tau^{\prime} \tag{2}
\end{equation*}
$$

Now remember that $\vec{j} d \tau$ corresponds to $I d \vec{\ell}$, so if the current is confined in wires, the result is

$$
\begin{equation*}
\vec{A}=\frac{\mu_{0}}{4 \pi} \int \frac{I d \overrightarrow{\ell^{\prime}}}{R} \tag{3}
\end{equation*}
$$

At this point we may stop and consider if there is any rule for magnetic field analagous to our RULE 1 for electric fields. Since there is no magetic charge, there is no "point charge" field. But we can use our expansion

$$
\frac{1}{R}=\sum_{l=0}^{\infty} \frac{\left(r^{\prime}\right)^{l}}{r^{l+1}} P_{l}\left(\cos \theta^{\prime}\right)
$$

where \vec{r} is on the polar axis. Then

$$
\vec{A}(\vec{r}=r \hat{z})=\frac{\mu_{0}}{4 \pi} \sum \frac{I}{r^{l+1}} \int\left(r^{\prime}\right)^{l} P_{l}\left(\cos \theta^{\prime}\right) d \vec{\ell}^{\prime}
$$

The $l=0$ term is

$$
\vec{A}_{0}=\frac{\mu_{0} I}{4 \pi r} \int d \vec{\ell}^{\prime}
$$

Since the current flows in closed loops, $\int d \overrightarrow{\ell^{\prime}}=0$. (This result is actually more general, because in a static situation $\vec{\nabla} \cdot \vec{j}=0$, and the lines of \vec{j} also form closed loops.) This is the result we expected. The next term is

$$
\vec{A}_{1}=\frac{\mu_{0} I}{4 \pi r^{2}} \int r^{\prime} \cos \theta^{\prime} d \overrightarrow{\ell^{\prime}}=\frac{\mu_{0} I}{4 \pi r^{2}} \int\left(\vec{r}^{\prime} \cdot \hat{z}\right) d \overrightarrow{\ell^{\prime}}
$$

We can use Stokes theorem to evaluate this integral.

$$
\int \vec{u} \cdot d \vec{l}=\int(\vec{\nabla} \times \vec{u}) \cdot \hat{n} d A
$$

Let $\vec{u}=\vec{c} \chi$ where \vec{c} is a constant vector and χ is a scalar function. Then

$$
\begin{aligned}
\vec{c} \cdot \int \chi d \vec{l} & =\int(\vec{\nabla} \times \vec{c} \chi) \cdot \hat{n} d A \\
& =\int[(\vec{\nabla} \chi) \times \vec{c}] \cdot \hat{n} d A
\end{aligned}
$$

We may re-arrange the triple scalar product

$$
\vec{c} \cdot \int \chi d \vec{l}=-\vec{c} \cdot \int(\vec{\nabla} \chi) \times \hat{n} d A
$$

This is true for an arbitrary constant vector \vec{c}, so, with $\chi=\left(\vec{r}^{\prime} \cdot \hat{z}\right)$

$$
\begin{aligned}
\int\left(\vec{r}^{\prime} \cdot \hat{z}\right) d \overrightarrow{l^{\prime}} & =-\int\left[\vec{\nabla}^{\prime}\left(\vec{r}^{\prime} \cdot \hat{z}\right)\right] \times \hat{n}^{\prime} d A^{\prime} \\
& =-\int\left[\hat{z} \times\left(\vec{\nabla}^{\prime} \times \vec{r}^{\prime}\right)+\left(\hat{z} \cdot \vec{\nabla}^{\prime}\right) \vec{r}^{\prime}\right] \times \hat{n}^{\prime} d A^{\prime} \\
& =-\int\left(0+\hat{z} \times \hat{n}^{\prime}\right) d A^{\prime} \\
& =-\hat{z} \times \int \hat{n}^{\prime} d A^{\prime}=\int \hat{n}^{\prime} d A^{\prime} \times \hat{z}
\end{aligned}
$$

Note that \hat{z} can come out of the integral because it is a constant. So

$$
\vec{A}_{1}=\frac{\mu_{0} I}{4 \pi r^{2}} \int \hat{n}^{\prime} d A^{\prime} \times \hat{z}=\frac{\mu_{0}}{4 \pi r^{2}} \vec{m} \times \hat{z}=\frac{\mu_{0}}{4 \pi r^{2}} \vec{m} \times \hat{r}
$$

where

$$
\vec{m}=I \int \hat{n}^{\prime} d A^{\prime}
$$

is the magnetic moment of the loop. The corresponding magnetic field is

$$
\begin{aligned}
\vec{B}_{1} & =\vec{\nabla} \times\left[\frac{\mu_{0}}{4 \pi r^{2}} \vec{m} \times \hat{r}\right] \\
& =\frac{\mu_{0}}{4 \pi}\left(-\frac{3}{r^{4}} \hat{r} \times(\vec{m} \times \vec{r})+\frac{1}{r^{3}} \vec{\nabla} \times(\vec{m} \times \vec{r})\right) \\
& =\frac{\mu_{0}}{4 \pi}\left(-\frac{3}{r^{3}}[\vec{m}-\hat{r}(\vec{m} \cdot \hat{r})]+\frac{1}{r^{3}}(-(\vec{m} \cdot \vec{\nabla}) \vec{r}+\vec{m}(\vec{\nabla} \cdot \vec{r}))\right) \\
& =\frac{\mu_{0}}{4 \pi r^{3}}(-3 \vec{m}+3 \vec{r}(\vec{m} \cdot \hat{r})-\vec{m}+3 \vec{m}) \\
& =\frac{\mu_{0}}{4 \pi r^{3}}[3 \vec{r}(\vec{m} \cdot \hat{r})-\vec{m}]
\end{aligned}
$$

This is a dipole field. Thus the magnetic equivalent of RULE 1 is :
At a great distance from a current distribution, the magnetic field is a dipole field

Here is another useful result:

$$
\begin{equation*}
\oint_{C} \vec{A} \cdot d \vec{\ell}=\int_{S}(\vec{\nabla} \times \vec{A}) \cdot \hat{n} d a=\int_{S} \vec{B} \cdot \hat{n} d a=\Phi_{B} \tag{4}
\end{equation*}
$$

Thus the circulation of \vec{A} around a curve C equals the magnetic flux through any surface S spanning the curve.

Boundary conditions for \vec{B}
We start with the Maxwell equations. Remember, if the equation has a divergence we integrate over a small volume (pillbox) that crosses the boundary.

But if the equation has a curl, we integrate over a rectangular surface that lies perpendicular to the surface.

So we start with $\vec{\nabla} \cdot \vec{B}=0$

$$
\int \vec{\nabla} \cdot \vec{B} d \tau=0=\oint_{S} \vec{B} \cdot d \vec{A}
$$

But because we chose $h \ll d$, the integral over the sides is negligible, and on the bottom side $d \vec{A}_{2}=-\hat{n} d A$, so we have

$$
\begin{equation*}
\left(\overrightarrow{B_{1}}-\vec{B}_{2}\right) \cdot \hat{n}=0 \tag{5}
\end{equation*}
$$

The normal component of \vec{B} is continuous.
For the curl equation, we use the rectangle shown:

Then

$$
\begin{aligned}
\int_{S}(\vec{\nabla} \times \vec{B}) \cdot d \vec{A} & =\int_{S} \mu_{0} \vec{j} \cdot d \vec{A} \\
\oint_{C} \vec{B} \cdot d \vec{\ell} & =\mu_{0} \int \vec{j} \cdot \hat{N} d h w \\
\left(\vec{B}_{1}-\vec{B}_{2}\right) \cdot(-\hat{t}) w & =\mu_{0} \mu_{0}\left(\int \vec{j} d h\right) \cdot \hat{N} w \\
\left(\vec{B}_{1}-\vec{B}_{2}\right) \cdot(-\hat{n} \times \hat{N}) & =\mu_{0} \vec{K} \cdot \hat{N}
\end{aligned}
$$

Rearrange the triple scalar product on the left to get

$$
-\left[\left(\vec{B}_{1}-\vec{B}_{2}\right) \times \hat{n}\right] \cdot \hat{N}=\mu_{0} \vec{K} \cdot \hat{N}
$$

Since we may orient the rectangle so that \hat{N} is any vector in the surface, we have

$$
\begin{equation*}
\hat{n} \times\left(\vec{B}_{1}-\vec{B}_{2}\right)=\mu_{0} \vec{K} \tag{6}
\end{equation*}
$$

Thus the tangential component of \vec{B} has a discontinuity that depends on the surface current density \vec{K}. Crossing both sides with \hat{n}, we get an alternate version:

$$
\begin{aligned}
{\left[\hat{n} \times\left(\vec{B}_{1}-\vec{B}_{2}\right)\right] \times \hat{n} } & =\mu_{0} \vec{K} \times \hat{n} \\
\left(\vec{B}_{1}-\vec{B}_{2}\right)-\hat{n}\left[\hat{n} \cdot\left(\vec{B}_{1}-\vec{B}_{2}\right)\right] & =\mu_{0} \vec{K} \times \hat{n}
\end{aligned}
$$

But now we may make use of (5) to obtain

$$
\begin{equation*}
\left(\vec{B}_{1}-\vec{B}_{2}\right)=\mu_{0} \vec{K} \times \hat{n} \tag{7}
\end{equation*}
$$

What about the vector potential? Remember that for the scalar potential V we were able to show that V is continuous across the surface (in most cases). When we find \vec{A} we first choose a gauge condition. The Coulomb gauge condition is

$$
\vec{\nabla} \cdot \vec{A}=0
$$

and then we can use our usual pillbox trick to show that

$$
\begin{equation*}
\vec{A} \cdot \hat{n} \text { is continuous } \tag{8}
\end{equation*}
$$

For the tangential component, we make use of equation (4). Then, using the rectangle,

$$
\begin{aligned}
\oint_{C} \vec{A} \cdot d \vec{\ell} & =\Phi_{B}=\vec{B} \cdot \hat{N} w h \\
\left(\vec{A}_{1}-\vec{A}_{2}\right) \cdot(-\hat{t}) w & =\vec{B} \cdot \hat{N} w h \rightarrow 0 \text { as } h \rightarrow 0
\end{aligned}
$$

Thus we have

$$
\begin{equation*}
\vec{A} \cdot \hat{t} \text { is continuous } \tag{9}
\end{equation*}
$$

These two result taken together show that the vector potential as a whole is also continuous across the boundary.

Finally let's put \vec{A} into equation (6):

$$
\vec{\nabla} \times\left(\overrightarrow{A_{1}}-\overrightarrow{A_{2}}\right)=\mu_{0} \vec{K} \times \hat{n}
$$

So the derivatives of \vec{A} have a discontinuity. But which ones? Let's expand

$$
\hat{n} \times \vec{B}=\hat{n} \times(\vec{\nabla} \times \vec{A})=n_{i} \vec{\nabla} A_{i}-(\hat{n} \cdot \vec{\nabla}) \vec{A}
$$

Then

$$
\begin{equation*}
\hat{n} \times\left(\vec{B}_{1}-\vec{B}_{2}\right)=n_{i} \vec{\nabla}\left(A_{i, 1}-A_{i, 2}\right)-(\hat{n} \cdot \vec{\nabla})\left(\overrightarrow{A_{1}}-\overrightarrow{A_{2}}\right)=\mu_{0} \vec{K} \tag{10}
\end{equation*}
$$

But we have shown that each component of \vec{A} is continuous at the surface. So the components of

$$
\vec{\nabla}\left(A_{i, 1}-A_{i, 2}\right)
$$

parallel to the surface must be zero. Thus only the normal derivatives remain. Then the normal component of equation (10) is identically zero, and the only non-zero components of the boundary condition are the tangential components

$$
\begin{equation*}
(\hat{n} \cdot \vec{\nabla})\left(\vec{A}_{1}-\vec{A}_{2}\right)_{\tan }=-\mu_{0} \vec{K} \tag{11}
\end{equation*}
$$

Now this is neat. Each component of \vec{A} satisfies Laplace's equation with Neumann boundary conditions, and so it must have a unique solution, as we already proved for V.

Magnetic scalar potential

When we have the special case of $\vec{j} \equiv 0, \vec{\nabla} \times \vec{B}=0$ and we may use a magnetic scalar potenial $\Phi_{\text {mag }}$. This can be useful if the current is confined to lines or sheets, because we can create a nice boundary-value problem for Φ_{mag}.

$$
\begin{gather*}
\vec{B}=-\vec{\nabla} \Phi_{\mathrm{mag}} \\
\vec{\nabla} \cdot \vec{B}=0 \Rightarrow \nabla^{2} \Phi_{\mathrm{mag}}=0 \tag{12}\\
B_{\text {normal }} \text { continuous } \Rightarrow \hat{n} \cdot \vec{\nabla} \Phi_{\mathrm{mag}} \text { is continuous } \tag{13}\\
\hat{n} \times\left(\vec{B}_{1}-\vec{B}_{2}\right)=\mu_{0} \vec{K} \Rightarrow \hat{n} \times \vec{\nabla}\left(\Phi_{\mathrm{mag} 1}-\Phi_{\mathrm{mag} 2}\right)=-\mu_{0} \vec{K} \tag{14}
\end{gather*}
$$

Let's use these boundary conditions to find the potential due to a spinning spherical shell of charge. The current is confined to the surface and has the value

$$
\vec{K}=\sigma \vec{v}=\sigma \vec{\omega} \times \vec{r}=\sigma \omega a \sin \theta \hat{\phi}
$$

where in the last expression put the z-axis along the rotation axis. We will take σ to be a constant. The equation for Φ_{mag} in the region entirely inside (or entirely outside) the sphere is (1 with $\vec{j}=0$)

$$
\nabla^{2} \Phi_{\mathrm{mag}}=0
$$

and because we have azimuthal symmetry, the solution is of the form

$$
\begin{aligned}
\Phi_{\text {in }} & =\sum_{l=1}^{\infty} C_{l} r^{l} P_{l}(\cos \theta) \\
\Phi_{\text {out }} & =\sum_{l=1}^{\infty} \frac{D_{l}}{r^{l+1}} P_{l}(\cos \theta)
\end{aligned}
$$

We have omitted the $l=0$ term because it contributes zero field inside, and we know there can be no monopole term outside. What else do we know? At the boundary, from (13)

$$
\begin{align*}
& \frac{\left.\partial \Phi_{\mathrm{mag}, \text { out }}\right|_{r=a}-\left.\frac{\partial \Phi_{\mathrm{mag}, \text { in }}}{\partial r}\right|_{r=a}}{}=0 \\
& \sum_{l=1}^{\infty} l C_{l} a^{l-1} P_{l}(\cos \theta)=-\sum_{l=1}^{\infty}(l+1) \frac{D_{l}}{a^{l+2}} P_{l}(\cos \theta) \\
& C_{l}=-\frac{D_{l}}{a^{2 l+1}} \frac{l+1}{l} l>0 \tag{15}
\end{align*}
$$

and from (14).

$$
\begin{aligned}
\frac{1}{a}\left(\left.\frac{\partial \Phi_{\mathrm{mag}, \text { out }}}{\partial \theta}\right|_{r=a}-\left.\frac{\partial \Phi_{\mathrm{mag}, \text { in }}}{\partial \theta}\right|_{r=a}\right) & =-\mu_{0} \sigma a \omega \sin \theta \\
\frac{1}{a \sin \theta}\left(\left.\frac{\partial \Phi_{\mathrm{mag}, \text { out }}}{\partial \phi}\right|_{r=a}-\left.\frac{\partial \Phi_{\mathrm{mag}, \text { in }}}{\partial \phi}\right|_{r=a}\right) & =0
\end{aligned}
$$

The last equation is automatically satisfied. Thus the final condition we need to satisfy is

$$
\sum_{l=1}^{\infty} \frac{D_{l}}{a^{l+2}} \frac{\partial}{\partial \theta} P_{l}(\cos \theta)-\sum_{l=1}^{\infty} C_{l} a^{l-1} \frac{\partial}{\partial \theta} P_{l}(\cos \theta)=-\mu_{0} \sigma a \omega \sin \theta
$$

Now since $P_{1}(\cos \theta)=\cos \theta$ and $\frac{\partial}{\partial \theta} \cos \theta=-\sin \theta$, the first term in the sum is

$$
-\left(\frac{D_{1}}{a^{3}}-C_{1}\right) \sin \theta
$$

so we may satisfy the boundary conditons by taking

$$
\frac{D_{1}}{a^{3}}-C_{1}=\mu_{0} \sigma a \omega
$$

and all the other $C_{l}, D_{l}=0$. Then equation (15) gives

$$
\frac{D_{1}}{a^{3}}+\frac{D_{1}}{a^{3}} \frac{2}{1}=\mu_{0} \sigma a \omega \Rightarrow D_{1}=\frac{\mu_{0} \sigma a^{4} \omega}{3}
$$

and then

$$
C_{1}=-2 \frac{\mu_{0} \sigma a \omega}{3}
$$

So

$$
\Phi_{\mathrm{mag}}=\left\{\begin{array}{cc}
-\frac{2}{3} \mu_{0} \sigma a \omega r \cos \theta & \text { inside } \\
\frac{1}{3} \mu_{0} \sigma a^{2} \omega \frac{a^{2}}{r^{2}} \cos \theta & \text { outside }
\end{array}\right\}
$$

giving a field

$$
\vec{B}=\left\{\begin{array}{cc}
\frac{2}{3} \mu_{0} \sigma a \omega \hat{z} & \text { inside } \\
\mu_{0} \sigma a \omega \frac{a^{3}}{3 r^{3}}(2 \cos \theta \hat{r}+\sin \theta \hat{\theta}) & \text { outside }
\end{array}\right\}
$$

Thus the field inside is uniform and the field outside is a pure dipole field. The dipole moment is

$$
m=\frac{4 \pi}{3} \sigma a^{4} \omega
$$

The dimensions of m are

$$
\frac{\text { charge }}{\text { area }} \frac{(\text { length })^{4}}{\text { time }}=\frac{\text { charge }}{\text { time }} \times(\text { length })^{2}=\text { current } \times \text { area }
$$

which is correct. You should verify that you get the same m by summing current loops.

Compare this solution with Griffiths' example 5.11. Which method do you think is easier?

