
Magnetic vector potential
When we derived the scalar electric potential we started with the relation

~r £ ~E = 0 to conclude that ~E could be written as the gradient of a scalar
potential. That won’t work for the magnetic field (except where ~j = 0), because
the curl of ~B is not zero in general. Instead, the divergence of ~B is zero. That
means that ~B may be written as the curl of a vector that we shall call ~A.

~B = ~r £ ~A ) ~r ¢ ~B = ~r ¢
³

~r £ ~A
´

= 0

Then the second equation becomes

~r £ ~B = ~r £
³

~r £ ~A
´

= ~r
³

~r ¢ ~A
´

¡ r2 ~A = µ0
~j

We had some flexibility in choosing the scalar potential V because ~E = ¡~rV is
not changed if we add a constant to V, since ~r (constant) = 0. Similarly here,
if we add to ~A the gradient of a scalar function, ~A2 = ~A1 + ~rχ, we have

~B2 = ~r £ ~A2 = ~r £
³

~A1 + ~rχ
´

= ~r £ ~A1 = ~B1

With this flexibility, we may choose ~r ¢ ~A = 0. For suppose this is not true.
Then

~r ¢
³

~A1 + ~rχ
´

= ~r ¢ ~A1 + r2χ = 0

So we have an equation for the function χ

r2χ = ¡~r ¢ ~A1

Once we solve this we will have a vector ~A2 whose divergence is zero. Once we
know that we can do this, we may just set ~r ¢ ~A = 0 from the start. This is
called the Coulomb gauge condition. With this choice, the equation for ~A is

r2 ~A = ¡µ0
~j (1)

We may look at this equation one component at a time (provided that we use
Cartesian components.) Thus, for the x¡component

r2Ax = ¡µ0jx

This equation has the same form as the equation for V

r2V = ¡ ρ

ε0

and thus the solution will also have the same form:

Ax (~r) =
µ0

4π

Z
jx (~r0)

R
dτ 0
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and since we have an identical relation for each component, then

~A =
µ0

4π

Z ~j (~r 0)

R
dτ 0 (2)

Now remember that ~jdτ corresponds to Id~̀, so if the current is confined in
wires, the result is

~A =
µ0

4π

Z
Id~̀0

R
(3)

At this point we may stop and consider if there is any rule for magnetic field
analagous to our RULE 1 for electric fields. Since there is no magetic charge,
there is no "point charge" field. But we can use our expansion

1

R
=

1X

l=0

(r0)l

rl+1
Pl

¡
cos θ0¢

where ~r is on the polar axis. Then

~A (~r = rẑ) =
µ0

4π

X I

rl+1

Z
(r 0)l

Pl

¡
cos θ0¢ d~̀0

The l = 0 term is
~A0 =

µ0I

4πr

Z
d~̀0

Since the current flows in closed loops,
R

d~̀0 = 0. (This result is actually more
general, because in a static situation ~r¢~j = 0, and the lines of ~j also form closed
loops.) This is the result we expected. The next term is

~A1 =
µ0I

4πr2

Z
r 0 cos θ0d~̀0 =

µ0I

4πr2

Z
(~r0 ¢ ẑ)d~̀0

We can use Stokes theorem to evaluate this integral.
Z

~u ¢ d~l =

Z ³
~r £ ~u

´
¢ n̂ dA

Let ~u = ~cχ where ~c is a constant vector and χ is a scalar function. Then

~c ¢
Z

χd~l =

Z ³
~r £ ~cχ

´
¢ n̂dA

=

Z h³
~rχ

´
£ ~c

i
¢ n̂ dA

We may re-arrange the triple scalar product

~c ¢
Z

χd~l = ¡~c ¢
Z ³

~rχ
´

£ n̂ dA
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This is true for an arbitrary constant vector ~c, so, with χ = (~r 0 ¢ ẑ)

Z
(~r0 ¢ ẑ) d~l 0 = ¡

Z h
~r

0
(~r0 ¢ ẑ)

i
£ n̂0dA0

= ¡
Z h

ẑ £
³

~r
0
£ ~r0

´
+

³
ẑ ¢ ~r

0´
~r0

i
£ n̂0dA0

= ¡
Z

(0 + ẑ £ n̂0) dA0

= ¡ẑ £
Z

n̂0dA0 =

Z
n̂0dA0 £ ẑ

Note that ẑ can come out of the integral because it is a constant. So

~A1 =
µ0I

4πr2

Z
n̂0dA0 £ ẑ =

µ0

4πr2
~m £ ẑ =

µ0

4πr2
~m £ r̂

where

~m = I

Z
n̂0dA0

is the magnetic moment of the loop. The corresponding magnetic field is

~B1 = ~r £
h µ0

4πr2
~m £ r̂

i

=
µ0

4π

µ
¡ 3

r4
r̂ £ (~m £ ~r) +

1

r3
~r £ (~m £ ~r)

¶

=
µ0

4π

µ
¡ 3

r3
[~m ¡ r̂ (~m ¢ r̂)] +

1

r3

³
¡

³
~m ¢ ~r

´
~r + ~m

³
~r ¢ ~r

´´¶

=
µ0

4πr3
(¡3~m + 3~r (~m ¢ r̂) ¡ ~m + 3~m)

=
µ0

4πr3
[3~r (~m ¢ r̂) ¡ ~m]

This is a dipole field. Thus the magnetic equivalent of RULE 1 is :

At a great distance from a current distribution, the magnetic
field is a dipole field

Here is another useful result:
I

C

~A ¢ d~̀ =

Z

S

³
~r £ ~A

´
¢ n̂ da =

Z

S

~B ¢ n̂ da = ©B (4)

Thus the circulation of ~A around a curve C equals the magnetic flux through
any surface S spanning the curve.

Boundary conditions for ~B
We start with the Maxwell equations. Remember, if the equation has a

divergence we integrate over a small volume (pillbox) that crosses the boundary.

3



But if the equation has a curl, we integrate over a rectangular surface that lies
perpendicular to the surface.

So we start with ~r ¢ ~B = 0Z
~r ¢ ~Bdτ = 0 =

I

S

~B ¢ d ~A

But because we chose h ¿ d, the integral over the sides is negligible, and on
the bottom side d ~A2 = ¡n̂dA, so we have

³
~B1 ¡ ~B2

´
¢ n̂ = 0 (5)

The normal component of ~B is continuous.
For the curl equation, we use the rectangle shown:

Then
Z

S

³
~r £ ~B

´
¢ d ~A =

Z

S

µ0
~j ¢ d ~A

I

C

~B ¢ d~̀ = µ0

Z
~j ¢ N̂dh w

³
~B1 ¡ ~B2

´
¢
¡
¡t̂

¢
w = µ0µ0

µZ
~jdh

¶
¢ N̂ w

³
~B1 ¡ ~B2

´
¢
³
¡n̂ £ N̂

´
= µ0

~K ¢ N̂
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Rearrange the triple scalar product on the left to get

¡
h³

~B1 ¡ ~B2

´
£ n̂

i
¢ N̂ = µ0

~K ¢ N̂

Since we may orient the rectangle so that N̂ is any vector in the surface, we
have

n̂ £
³

~B1 ¡ ~B2

´
= µ0

~K (6)

Thus the tangential component of ~B has a discontinuity that depends on the
surface current density ~K. Crossing both sides with n̂, we get an alternate
version:

h
n̂ £

³
~B1 ¡ ~B2

´i
£ n̂ = µ0

~K £ n̂
³

~B1 ¡ ~B2

´
¡ n̂

h
n̂ ¢

³
~B1 ¡ ~B2

´i
= µ0

~K £ n̂

But now we may make use of (5) to obtain

³
~B1 ¡ ~B2

´
= µ0

~K £ n̂ (7)

What about the vector potential? Remember that for the scalar poten-
tial V we were able to show that V is continuous across the surface (in most
cases). When we find ~A we first choose a gauge condition. The Coulomb gauge
condition is

~r ¢ ~A = 0

and then we can use our usual pillbox trick to show that

~A ¢ n̂ is continuous (8)

For the tangential component, we make use of equation (4). Then, using the
rectangle,

I

C

~A ¢ d~̀ = ©B = ~B ¢ N̂ wh

³
~A1 ¡ ~A2

´
¢
¡
¡t̂

¢
w = ~B ¢ N̂wh ! 0 as h ! 0

Thus we have
~A ¢ t̂ is continuous (9)

These two result taken together show that the vector potential as a whole is
also continuous across the boundary.

Finally let’s put ~A into equation (6):

~r £
³

~A1 ¡ ~A2

´
= µ0

~K £ n̂
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So the derivatives of ~A have a discontinuity. But which ones? Let’s expand

n̂ £ ~B = n̂ £
³

~r £ ~A
´

= ni
~rAi ¡

³
n̂ ¢ ~r

´
~A

Then

n̂ £
³

~B1 ¡ ~B2

´
= ni

~r (Ai,1 ¡ Ai,2) ¡
³
n̂ ¢ ~r

´ ³
~A1 ¡ ~A2

´
= µ0

~K (10)

But we have shown that each component of ~A is continuous at the surface. So
the components of

~r (Ai,1 ¡ Ai,2)

parallel to the surface must be zero. Thus only the normal derivatives remain.
Then the normal component of equation (10) is identically zero, and the only
non-zero components of the boundary condition are the tangential components

³
n̂ ¢ ~r

´ ³
~A1 ¡ ~A2

´
tan

= ¡µ0
~K (11)

Now this is neat. Each component of ~A satisfies Laplace’s equation with
Neumann boundary conditions, and so it must have a unique solution, as we
already proved for V.

Magnetic scalar potential
When we have the special case of ~j ´ 0, ~r £ ~B = 0 and we may use a

magnetic scalar potenial ©ma g . This can be useful if the current is confined to
lines or sheets, because we can create a nice boundary-value problem for ©m ag .

~B = ¡~r©m ag

~r ¢ ~B = 0 ) r2©m ag = 0 (12)

Bno rma l continuous ) n̂ ¢ ~r©m ag is continuous (13)

n̂ £
³

~B1 ¡ ~B2

´
= µ0

~K ) n̂ £ ~r (©m ag1 ¡ ©m ag2) = ¡µ0
~K (14)

Let’s use these boundary conditions to find the potential due to a spinning
spherical shell of charge. The current is confined to the surface and has the
value

~K = σ~v = σ~ω £ ~r = σωa sinθφ̂

where in the last expression put the z¡axis along the rotation axis. We will
take σ to be a constant. The equation for ©m ag in the region entirely inside (or
entirely outside) the sphere is (1 with ~j = 0)

r2©ma g = 0

and because we have azimuthal symmetry, the solution is of the form

©in =

1X

l=1

Clr
lPl (cos θ)

©out =
1X

l=1

Dl

rl+1
Pl (cos θ)
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We have omitted the l = 0 term because it contributes zero field inside, and we
know there can be no monopole term outside. What else do we know? At the
boundary, from (13)

∂©m ag ,out

∂r

¯̄
¯̄
r=a

¡ ∂©m ag ,in

∂r

¯̄
¯̄
r=a

= 0

1X

l=1

lCla
l¡1Pl (cos θ) = ¡

1X

l=1

(l + 1)
Dl

al+2
Pl (cos θ)

Cl = ¡ Dl

a2l+1

l + 1

l
l > 0 (15)

and from (14).

1

a

µ
∂©m ag, out

∂θ

¯̄
¯̄
r=a

¡ ∂©m ag,in

∂θ

¯̄
¯̄
r=a

¶
= ¡µ0σaω sinθ

1

a sinθ

µ
∂©m ag, out

∂φ

¯̄
¯̄
r=a

¡ ∂©m ag,in

∂φ

¯̄
¯̄
r=a

¶
= 0

The last equation is automatically satisfied. Thus the final condition we need
to satisfy is

1X

l=1

Dl

al+2

∂

∂θ
Pl (cos θ) ¡

1X

l=1

Cla
l¡1 ∂

∂θ
Pl (cos θ) = ¡µ0σaω sinθ

Now since P1 (cos θ) = cos θ and ∂
∂θ cos θ = ¡ sin θ, the first term in the sum is

¡
µ

D1

a3
¡ C1

¶
sin θ

so we may satisfy the boundary conditons by taking

D1

a3
¡ C1 = µ0σaω

and all the other Cl, Dl = 0. Then equation (15) gives

D1

a3
+

D1

a3

2

1
= µ0σaω ) D1 =

µ0σa4ω

3

and then
C1 = ¡2

µ0σaω

3

So

©m ag =

½ ¡ 2
3
µ0σaωr cos θ inside

1
3µ0σa2ω a2

r2 cos θ outside

¾

giving a field

~B =

(
2
3
µ0σaωẑ inside

µ0σaω a3

3r3

³
2cos θ r̂ + sin θ θ̂

´
outside

)
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Thus the field inside is uniform and the field outside is a pure dipole field. The
dipole moment is

m =
4π

3
σa4ω

The dimensions of m are

charge
area

(length)
4

time
=

charge
time

£ (length)
2

= current £ area

which is correct. You should verify that you get the same m by summing current
loops.

Compare this solution with Gri¢ths’ example 5.11. Which method do you
think is easier?
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