
MAGNETIC FIELDS IN MATTER
Magnetization
When considering the electric fields in matter we needed to think about

the atomic structure of the material. Applied electric fields tend to distort
the atoms and/or molecules by stretching and rotating them. The electron
orbits in atoms constitute little current loops, and so they form little magnetic
dipoles. As electric fields align electric dipoles with a torque ~τ = ~p £ ~E, so
also magnetic fields align magnetic dipoles with a torque ~τ = ~m £ ~B. (This is
how compass needles work.) In most materials, thermal agitation ensures that
the atomic dipoles are randomly oriented, but applied fields tend to align the
dipoles parallel to ~B. The material is then magnetized. However, the result of
the alognment is quite di¤erent from what we found with electric fields. The
electric dipoles create a charge layer on the surface of a dielectric, and that layer
produces a field within the material that is opposite the applied field. Thus the
result is a net field inside the material that is smaller than the applied field.

Aligned magnetic dipoles produce a surface current layer (LB Figure 29.25)
and the magnetic field inside this current loop is parallel to the applied field.
Thus the net result is a field inside the material that is greater than the applied
field. The e¤ect is called paramagnetism.

But this is not yet the whole story. Changing magnetic fields produce electric
fields through Faraday’s law, and those electric fields e¤ect the atomic currents.
Let’s see how it goes.

We model a simple atomic magnetic moment as an electron orbiting with
radius r at speed v. The magnetic moment is

m = IA =
e

T
πr2

where T is the period 2πr/v. Thus

m =
e

2
rv

Now let’s worry about directions. The current is opposite the velocity, because
the charge is negative, and so if ~ω = ωẑ = vẑ

r
, then

~m = ¡ e

2
rvẑ

The flux of external magnetic field through this loop is

©ext = πr2 ~Bext ¢ ẑ

and the changing flux produces an emf

ε =

I
~E ¢ d~l = ¡d©ext

dt
= ¡πr2 d

dt
~Bex t ¢ ẑ

If we start with ~Bext = 0, the centripetal force on the electron orbit is purely
electric:

~Fc = ¡mv2

r
r̂ = ¡e

Ze

4πε0r2
r̂ (1)
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The induced electric field is given by

2πrEφ = ¡πr2 d

dt
~Bex t ¢ ẑ

So if ~B ¢ ẑ is increasing, Eθ will be negative, Fφ will be positive and the particle’s
speed will increase. However, if ~B ¢ ẑ is decreasing, Eθ will be positive, Fφ

will be negative and the particle’s speed will decrease. So after time ¢t, the
speed will have changed by ¢v, and we also have an additional force component
~Fm ag = ¡e~v £ ~B

Fr = ¡ Ze2

4πε0r
¡ evBz = ¡m (v + ¢v)

2

r
= ¡mv2

r
¡ 2mv¢v

r

where we ignore the square of the small change ¢v, as usual. The first terms
on each side are equal, by (1). Thus

evBz =
2mv¢v

r

¢v =
eBzr

2m

As we concluded above, ¢v is positive if Bz is positive. This change in speed
also changes the magnetic moment:

~m + ¢~m = ¡ e

2
r (v + ¢v) ẑ

So

¢ ~m = ¡ er

2

µ
eBzr

2m

¶
ẑ = ¡ e2r2

4m
~Bex t

The change in ~m is opposite the change in ~B. That means that increasing the
external ~B tends to decrease the internal field due to the dipoles. This e¤ect is
called diamagnetism.

Both these e¤ects happen at the same time. Diamagnetic e¤ects are usually
weak, and show up in materials in which the intrinsic atomic magnetic moments
are small (these are usually atoms with an even number of electrons, like Helium)
or materials that are hot, because the thermal agitation dirupts the alignment
of the dipoles. What this means is that the response of any given material to an
applied magnetic field will depend on that material’s properties: in some cases
the internal field is increased (these are paramagnetic materials) and in others,
decreased (these are diamagnetic materials). In both cases the e¤ect is small.

A very interesting class of materials, the ferromagnetic materials, are able
to maintain the alignment of the dipoles even when the applied field is removed,
thus forming a permanent magnet. The details are due to quantum mechanical
interactions, and we won’t discuss them here. Each ferrormagnetic material has
a characteristic temperature, called the Curie temperature, Above that temper-
ature, thermal e¤ects disrupt the alignment and a permanent magnet cannot be
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formed. There are additional very interesting features of these materials, such
as hysteresis, which make them more di¢cult to analyze. More later.

As with dielectric polarization, we define the magnetization of a magnetic
material ~M as the dipole moment per unit volume,

~M = n~m

Dielectrics are drawn into stronger electric field regions. Similarly, paramagnetic
materials are drawn into stronger magnetic field regions, while diamagnetic
materials are repelled from such regions.

Fields in magnetic materials.
With dielctrics we found it useful to introduce a new field ~D to aid in our

analysis. Similarly here we shall find it useful to introduce a new field ~H. The
proper name for ~B is magnetic induction, while ~H is called the magnetic field.
(Gri¢ths seems to hate this language, and I do too, so for the most part we’ll
ignore it, and continue to call ~B the magnetic field. Please use context to be
sure you know what is meant.) So let’s see how this goes.

We start with the magnetic vector potential due to one dipole.

~A =
µ0

4π

~m £ r̂

r2

and from this we can compute ~A due to a magnetized object:

~A (~r) =
µ0

4π

Z ~M £ R̂

R2
dτ 0

where, as usual, ~R = ~r ¡ ~r0. We may rewrite the integrand as follows:

~A (~r) =
µ0

4π

Z
~M £

µ
~r0 1

R

¶
dτ 0

=
µ0

4π

Z "
¡~r

0
£

Ã
~M

R

!
+

~r
0
£ ~M

R

#
dτ 0

=
µ0

4π

"Z

s

~M

R
£ d ~A0 +

Z ~r0 £ ~M

R
dτ 0

#
(2)

We may identify the bound current density

~jbound = ~r £ ~M (3)

and bound surface current density

~Kbo und = ~M £ n̂ (4)

so that ~A becomes

~A (~r) =
µ0

4π

"Z

s

~Kbound

R
dA0 +

Z ~jbound

R
dτ 0

#
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Equation (2) may be used for any magnetized object, including permanent mag-
nets.

Suppose we have a uniformly magnetized sphere, with ~M = Mẑ inside, and
zero outside, of course. Then ~jb ound = 0, because ~M is constant except at the
surface. But we take care of the surface with ~K.

~Kbo und = ~M £ r̂ = M sinθ φ̂

Now this looks just like our rotating, uniformly charged spherical shell, and the
field is identical if we replace σωa with M. The internal field is uniform and the
external field is a pure dipole.

~Bint =
2

3
µ0

~M

and the dipole moment is

~m =
4π

3
a3 ~M = ~M £ volume of sphere

This exactly what we might have expected.
We can use this result to motivate our expression for ~Kbo und . For any volume

V,
~m = ~MV

Let us look at a slab of area A and thickness t, so that

m = M At = IA

Thus the e¤ective "loop"current is I = Mt and thus the surface current is
K = I/t = M. Putting back the vectors to get the directions gives equation (4).

Now we take the total current and divide it into two parts: the bound current
due to magnetization and the free current due to moving charges,

~j = ~jbound +~jfr ee

Ampere’s law in di¤erential form is

~r £ ~B = µ0

³
~jbo und +~jfree

´
= µ0

h³
~r £ ~M

´
+~jf ree

i

Put the curl terms together to get

~r £
³

~B ¡ µ0
~M

´
= µ0

~jfree

Now define the field ~H by
~H ´ 1

µ0

~B ¡ ~M (5)

and we get
~r £ ~H =~jfree (6)
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We can then deduce the integral form of Ampere’s law for ~H, which is
I

~H ¢ d~l = Ifr ee =

Z
~jf ree ¢ n̂ dA

This is a very useful relation in situations with su¢cient symmetry.
~H satisfies a second equation that we can get from its definition (5). Taking

the divergence, we get

~r ¢ ~H ´ 1

µ0

~r ¢ ~B ¡ ~r ¢ ~M

But ~r ¢ ~B = 0, so
~r ¢ ~H ´ ¡~r ¢ ~M (7)

This can be very useful in situations where ~jf ree = 0. For then equation (6)
becomes ~r £ ~H = 0, and so we may express ~H as the gradient of a scalar
function I’ll call χ. If we write

~H = ¡~rχ

equation (7) becomes Poisson’s equation for χ.

r2χ = ~r ¢ ~M

This problem is exactly analgous to an electrostatic potential problem, where
¡~r ¢ ~M acts like a magnetic charge density.

Now we can see some important di¤erences between ~B and ~H. The field
lines of ~B form closed loops, because ~r ¢ ~B = 0. But the field lines of ~H begin
and end on "magnetic charge" where ~r ¢ ~M 6= 0.

Let’s look again at the magnetized sphere. Inside the sphere

~Hin =
1

µ0

~B ¡ ~M =
1

µ0

2

3
µ0

~M ¡ ~M = ¡
~M

3

Thus the lines of ~H diverge from the surface of the sphere where ~r ¢ ~M 6= 0.
Boundary conditions for ~H
Starting with the curl equation, and integrating around a rectangle across

the boundary, we have
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Z ³
~r £ ~H

´
¢ d ~A =

Z
~jfree ¢ dA

I
~H ¢ d~l = N̂ ¢

Z
~jfreedh w

³
~H1 ¡ ~H2

´
¢
¡
¡t̂

¢
= N̂ ¢ ~Kfree

Since t̂ = n̂ £ N̂ , we get

n̂ £
³

~H1 ¡ ~H2

´
= ~Kf ree (8)

Then integrating (7) over a pillbox, we get
Z

~r ¢ ~HdV ´ ¡
Z

~r ¢ ~M dV

Z
~H ¢ d ~A = ¡

Z
~M ¢ d ~A

Now if ~M is zero on one side of the surface (a frequent occurrence) we get

³
~Hout ¡ ~Hin

´
¢ n̂ = ~M ¢ n̂ (9)

~M ¢ ¹n acts like a surface "magnetic charge density" in producing ~H.
Suppose a bar magnet has a uniform magnetization ~M running along its

length. Then ~r ¢ ~M is zero everywhere except at the surface of the magnet
(where it is infinite). ~M ¢ n̂ is also zero except at the ends of the magnet. Thus
we have no "magnetic charge density" except at the two ends, where ~M ¢ n̂ is
positive on one end and negative on the other. Thus we have a physical dipole.
Inside the magnet ~H runs from the positive "magnetic charge" at one end to
the negative "magnetic charge" on the other. Outside we have a dipole-type
field.

Now ~B = µ0
~H + ~M forms closed loops. Outside there is no ~M and the ~B

field lines follow the ~H lines exactly. But the ~B lines form closed loops that
close inside the magnet, where ~B and ~H are opposite each other.

Let’s summarize the boundary conditions for ~B and ~H :

Bnorma l is continuous always

n̂ £
³

~H1 ¡ ~H2

´
= ~Kf ree; ~Ht angentia l is continuous if ~Kfr ee = 0

Linear Media
In LIH materials, the magnetization is proportional to the net field:

~M = χm
~H
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Here χm is the magnetic susceptibility. Unlike the electric susceptibility, χm

can take either sign: it is positive in paramagnetic materials and negative in
diamagnetic materials. But in both cases it is almost always very small, χm ¿
1. For LIH materials,

~B = µ0

³
~H + ~M

´
= µ0 (1 + χm) ~H = µ ~H

µ is the permeability of the material. For most LIH materials where this for-
mulation makes sense, µ ' µ0.

For these materials the bound current is

~jbound = ~r £ ~M = ~r £
³
χm

~H
´

and because of the IH part of LIH, we can move the susceptibilty through the
derivative to get

~jbound = χm
~r £ ~H = χm

~jfree

If there is no free current density inside the material, all the bound current will
be at the surface.

Feromagnetism
In a ferromagnetic material, the atomic dipoles tend to align with each other,

even in the absence of applied fields. the dipoles align in regions called domains.
Normally the domains are oriented randomly. When an external field is applied,
the dipoles at the edge of a domain feel an additonal torque, and the net e¤ect is
to cause the domains with magnetization parallel to the applied field to grow. If
the applied field is strong enough, the other domains actually rotate to align with
the applied field. When all the domains are aligned, the material is saturated
and ~B has its maximum value.

To magnetize the material we set up a coil so that we get an (almost) uniform
~H . (Remember it is ~H that is directly related to the free currents.) As the
current is increased, H increases and so does the magnetization. But once the
material is saturated, M does not increase further. Then B can increase only
slowly, since

~B = µ0

³
~H + ~M

´

with M À H. If we now begin to turn the current (and thus H) down, the
domains remain aligned Only when ~H reverses do we get a substantial decrease
in ~M . Thus the relation between ~B and ~H is not at all linear. Worse, the value
of ~B does not depend only on ~H, but also on the history— what has happened
previously. This phenomenon is called hysteresis. The graph of B versus H
looks like this:
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This is a hysteresis loop (Diagram from Reitz,Milford and Christy). . (See
LB page 942 for more examples.)

There are two kinds of ferromagnetic materials. Materials with a fat hystere-
sis loop are hard magnetic materials that are used to make permanent magnets.
Such materials include cobalt steel and the alloy called alnico. Materials that
have a thin hysteresis loop (such as ferrites) are soft magnetic materials used
in transformer cores. A H value of about 80 A/m is su¢cient to saturate iron,
which is a soft magnetic material.

Magnetic shielding
One of the important uses of magnetic materials is for magnetic shielding—

creating a volume of space where magnetic fields are reduced to almost zero.
As an example, consider an infinitely long cylindrical shell with internal and

external radii a and b, and large magnetic permeability µ. We place the z¡axis
along the axis of the cylinder. The shell is placed in a uniform external field
~B0 = B0x̂. Let’s find the magnetic field everywhere.

We may express ~H as the gradient of a scalar potential χ that satisfies
Laplace’s equation everywhere outside the shell, and in the hole. In the shell
itself

~r ¢ ~H ´ ¡~r ¢ ~M

But
~B = µ ~H

8



and
~r ¢ ~B = 0 = ~r ¢

³
µ ~H

´
= µ~r ¢ ~H

So
r2χ = 0

everywhere except at the edges of the shell.
We may express the solution in cylindrical coordinates with no z¡dependence.

Now we write three solutions, one valid in each of the three regions. In the hole,
the solution must be finite as r ! 0, so

χin =

1X

n=1

rn (An sinnφ + Bn cosnφ)

In the exterior, the solution must give us the applied field as r ! 1, so

χo ut = ¡B0

µ0

r cosφ +

1X

n=1

r¡n (Cn sinnφ + Dn cos nφ)

In the shell itself, we need all the terms:

χshe ll =

1X

n=1

¡
r¡n + αnrn

¢
(En sinnφ + Fn cosnφ)

Now we apply the boundary conditions.
Normal B is continuous at each boundary.

¡B0 cos φ¡µ0

1X

n=1

nb¡n¡1 (Cn sinnφ + Dn cos nφ) = µ

1X

n=1

¡
¡nb¡n¡1 + nαnbn¡1

¢
(En sin nφ + Fn cosnφ)

and

µ0

1X

n=1

nan¡1 (An sin nφ + Bn cos nφ) = µ

1X

n=1

¡
¡na¡n¡1 + nαnan¡1

¢
(En sinnφ + Fn cosnφ)

Tangential ~H is continuous at the boundaries:

B0

µ0

bsin φ+

1X

n=1

nb¡n (Cn cosnφ ¡ Dn sinnφ) =

1X

n=1

n
¡
b¡n + αnbn

¢
(En cosnφ ¡ Fn sin nφ)

and
1X

n=1

n
¡
a¡n + αnan

¢
(En cos nφ ¡ Fn sinnφ) =

1X

n=1

nan (An cosnφ ¡ Bn sinnφ)

We have seen this kind of thing before. The external field imposes the n = 1,
cosine mode— all the others are zero.Verify this for yourself. So looking at n = 1,
we have the 4 equations:

¡B0 ¡ µ0b
¡2D1 = µ

¡
¡b¡2 + α1

¢
F1 (10)
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µ0B1 = µ
¡
¡a¡2 + α1

¢
F1 (11)

B0

µ0

b + b¡1 (¡D1) =
¡
b¡1 + α1b

¢
(¡F1) (12)

and ¡
a¡1 + α1a

¢
(¡F1) = ¡aB1 (13)

for the four unknowns B1, D1, F1 and α1. We can already see from equation
(10) that the coe¢cient F1 has to be of order µ0/µ. and from (13) B1 will be
of roder F1. This is the source of the shielding.

Going at it systematically, we get from (13)

B1 =
¡
a¡2 + α1

¢
F1

Then putting this result into (11) we have

µ
¡
¡a¡2 + α1

¢
F1 = µ0

¡
a¡2 + α1

¢
F1

µ

µ0

¡
¡a¡2 + α1

¢
=

¡
a¡2 + α1

¢

α1

µ
µ

µ0

¡ 1

¶
= a¡2

µ
1 +

µ

µ0

¶

α1 = a¡2 µ + µ0

µ ¡ µ0

(14)

Then putting (14) into (10) we have

¡B0b
2 ¡ µ0D1 = µ

µ
¡1 +

b2

a2

µ + µ0

µ ¡ µ0

¶
F1

and puting (14) into (12) we get

B0b
2 ¡ µ0D1 = ¡µ0

µ
1 +

b2

a2

µ + µ0

µ ¡ µ0

¶
F1

Subtracting these two, we get

2B0b
2 =

Ã
µ ¡ µ0 ¡ b2

a2

(µ + µ0)
2

µ ¡ µ0

!
F1

F1 =
2B0a

2b2 (µ ¡ µ0)

a2 (µ ¡ µ0)
2 ¡ b2 (µ + µ0)

2
(15)

Adding gives

2µ0D1 = F1 (µ + µ0)

µ
1 ¡ b2

a2

¶

so

D1 =
(µ + µ0)

2µ0

µ
1 ¡ b2

a2

¶
2B0a

2b2 (µ ¡ µ0)

a2 (µ ¡ µ0)
2 ¡ b2 (µ + µ0)

2

=
B0

µ0

¡
a2 ¡ b2

¢ b2
¡
µ2 ¡ µ2

0

¢

a2 (µ ¡ µ0)
2 ¡ b2 (µ + µ0)

2
(16)
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and finally

B1 =
¡
a¡2 + α1

¢
F1

=
1

a2

µ
2µ

µ ¡ µ0

¶
2B0a2b2 (µ ¡ µ0)

a2 (µ ¡ µ0)
2 ¡ b2 (µ + µ0)

2

=
4µB0b

2

a2 (µ ¡ µ0)
2 ¡ b2 (µ + µ0)

2
(17)

Thus

χin =
4µB0b

2

a2 (µ ¡ µ0)
2 ¡ b2 (µ + µ0)

2
r cosφ

χout =
B0

µ0

cosφ

" ¡
a2 ¡ b2

¢

r

b2
¡
µ2 ¡ µ2

0

¢

a2 (µ ¡ µ0)
2 ¡ b2 (µ + µ0)

2
¡ r

#

χshe ll = B0

µ
(µ ¡ µ0)

r
+ (µ + µ0)

r

a2

¶
2a2b2

a2 (µ ¡ µ0)
2 ¡ b2 (µ + µ0)

2
cos φ

Verify that we get back ~B = ~B0 everywhere if µ ! µ0.
Let’s see what happens as µ/µ0 becomes very large:

χ in ! B0

µ

4b2

a2 ¡ b2
r cos φ

χout ! B0

µ0

·
b2

r
¡ r

¸
cos φ

χshe ll ! B0

µ

µ
1

r
+

r

a2

¶
2a2b2

a2 ¡ b2
cos φ

The fields in the cavity become

~Hin = ¡~rχin ! B0

µ

4b2

b2 ¡ a2
x̂

and
~Bin = µ0

~Hin ! µ0

µ
B0

4b2

b2 ¡ a2
x̂

Both are very small, so the shell has e¤ectively shielded the cavity from the
external fields. Within the shell

~Hs he ll =
B0

µ

2b2

b2 ¡ a2

Ã
x̂ ¡ a2 cos φ r̂ + sinφ φ̂

r2

!

which is small, but

~Bs he ll = B0
2b2

b2 ¡ a2

Ã
x̂ ¡ a2 cos φ r̂ + sinφ φ̂

r2

!

which is comparable to B0.
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