Multipole expansions

We have frequently referred to our RULE 1: far enough away from any charge distribution with net charge Q, the potential is approximately that due to a point charge Q located in the distribution. We also found from our very first example that the next correction is a dipole. The dipole potential falls off faster $\left(\propto 1 / r^{2}\right)$ than the point charge (or monopole) potential ($\propto 1 / r$). Now we'd like to make these ideas more precise.

We have a charge distribution with charge density $\rho\left(\vec{r}^{\prime}\right)$. We put the origin somewhere inside the distribution, and we put the polar axis in a spherical coordinate system through a point P at which we want to find the potential. The entire charge distribution is located inside a sphere of radius r_{0} and P is outside that sphere.

Then the potential at P is

$$
\begin{equation*}
V(\vec{r})=\frac{1}{4 \pi \varepsilon_{0}} \int \frac{\rho\left(\vec{r}^{\prime}\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|} d \tau^{\prime} \tag{1}
\end{equation*}
$$

where

$$
\left|\vec{r}-\vec{r}^{\prime}\right|=\sqrt{r^{2}+\left(r^{\prime}\right)^{2}-2 r r^{\prime} \cos \theta^{\prime}}
$$

Since $r>r_{0}$ and $r^{\prime}<r_{0}$, we factor out the r to get

$$
\left|\vec{r}-\vec{r}^{\prime}\right|=r \sqrt{1+\left(\frac{r^{\prime}}{r}\right)^{2}-2 \frac{r^{\prime}}{r} \cos \theta^{\prime}}=r \sqrt{1+\varepsilon}
$$

where

$$
|\varepsilon|=\left|\frac{r^{\prime}}{r}\left(\frac{r^{\prime}}{r}-2 \cos \theta^{\prime}\right)\right|<1
$$

In fact, as P gets farther from the charge distribution, ε becomes much less than 1. So we expand the square root

$$
\begin{aligned}
\frac{1}{\sqrt{1+\varepsilon}} & =(1+\varepsilon)^{-1 / 2}=1-\frac{1}{2} \varepsilon+\frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{2} \varepsilon^{2}+\cdots \\
& =1-\frac{1}{2} \varepsilon+\frac{3}{8} \varepsilon^{2}-\frac{5}{16} \varepsilon^{3}+\cdots
\end{aligned}
$$

So

$$
\begin{aligned}
& \frac{1}{\left|\vec{r}-\vec{r}^{\prime}\right|}= \frac{1}{r}\left[1-\frac{1}{2} \frac{r^{\prime}}{r}\left(\frac{r^{\prime}}{r}-2 \cos \theta^{\prime}\right)+\frac{3}{8}\left(\frac{r^{\prime}}{r}\right)^{2}\left(\frac{r^{\prime}}{r}-2 \cos \theta^{\prime}\right)^{2}-\frac{5}{16}\left(\frac{r^{\prime}}{r}\right)^{3}\left(\frac{r^{\prime}}{r}-2 \cos \theta^{\prime}\right)^{3}+\cdots\right] \\
&= \frac{1}{r}\left[\begin{array}{c}
\left.1+\frac{r^{\prime} \cos \theta^{\prime}}{r}-\frac{1}{2}\left(\frac{r^{\prime}}{r}\right)^{2}+\frac{3}{8}\left(\frac{r^{\prime}}{r}\right)^{2}\left(\left(\frac{r^{\prime}}{r}\right)^{2}-2 \frac{r^{\prime}}{r} \cos \theta^{\prime}+4 \cos ^{2} \theta^{\prime}\right)\right] \\
\\
-\frac{5}{16}\left(\frac{r^{\prime}}{r}\right)^{3}\left(\frac{r^{\prime}}{r}-2 \cos \theta^{\prime}\right)^{3}+\cdots
\end{array}\right] \\
&= \frac{1}{r}\left[\begin{array}{c}
1+\frac{r^{\prime} \cos \theta^{\prime}}{r}+\frac{1}{2}\left(\frac{r^{\prime}}{r}\right)^{2}\left(3 \cos ^{2} \theta^{\prime}-1\right)+ \\
\left.\frac{3}{8}\left(\frac{r^{\prime}}{r}\right)^{2}\left(\left(\frac{r^{\prime}}{r}\right)^{2}-2 \frac{r^{\prime}}{r} \cos \theta^{\prime}\right)-\frac{5}{16}\left(\frac{r^{\prime}}{r}\right)^{3}\left(\frac{r^{\prime}}{r}-2 \cos \theta^{\prime}\right)^{3}+\cdots\right] \\
=
\end{array}\right] \\
& \frac{1}{r}\left[1+\frac{r^{\prime}}{r} P_{1}\left(\mu^{\prime}\right)+\left(\frac{r^{\prime}}{r}\right)^{2} P_{2}\left(\mu^{\prime}\right)+\cdots\right]
\end{aligned}
$$

I'll let you check the next few. In fact

$$
\frac{1}{\left|\vec{r}-\vec{r}^{\prime}\right|}=\frac{1}{r} \sum_{l=0}^{\infty}\left(\frac{r^{\prime}}{r}\right)^{l} P_{l}\left(\mu^{\prime}\right)
$$

Now we put this result into our integral (1) for the potential:

$$
\begin{align*}
V(\vec{r}) & =\frac{1}{4 \pi \varepsilon_{0}} \int \rho\left(\vec{r}^{\prime}\right) \frac{1}{r} \sum_{l=0}^{\infty}\left(\frac{r^{\prime}}{r}\right)^{l} P_{l}\left(\mu^{\prime}\right) d \tau^{\prime} \\
& =\frac{1}{4 \pi \varepsilon_{0}} \frac{1}{r} \sum_{l=0}^{\infty} \frac{1}{r^{l}} \int \rho\left(\vec{r}^{\prime}\right)\left(r^{\prime}\right)^{l} P_{l}\left(\mu^{\prime}\right) d \tau^{\prime} \tag{2}
\end{align*}
$$

This is the multipole expansion of the potential at P due to the charge distribution. The first few terms are:

$$
l=0: \quad \frac{1}{4 \pi \varepsilon_{0}} \frac{1}{r} \int \rho\left(\vec{r}^{\prime}\right) d \tau^{\prime}=\frac{Q}{4 \pi \varepsilon_{0} r}
$$

This is our RULE 1. The monople moment (the total charge Q) is indendent of our choice of origin. The potential does depend on the origin (because r does) but only weakly if $r \gg r_{0}$.

$$
l=1: \quad \frac{1}{4 \pi \varepsilon_{0}} \frac{1}{r^{2}} \int \rho\left(\vec{r}^{\prime}\right) r^{\prime} \cos \theta^{\prime} d \tau^{\prime}
$$

This is the dipole potential.

$$
l=2: \quad \frac{1}{4 \pi \varepsilon_{0}} \frac{1}{r^{3}} \int \rho\left(\vec{r}^{\prime}\right)\left(r^{\prime}\right)^{2} P_{2}\left(\mu^{\prime}\right) d \tau^{\prime}
$$

This is the quadrupole potential.
Each succeeding term decreases faster with r and so becomes less important as P gets further from the origin.

These expressions depend on the particular coordinate system that we have chosen. Most importantly, P is on the polar axis. So let's see if we can write the results in a coordinate independent way. Note that

$$
\cos \theta^{\prime}=\frac{\hat{r} \cdot \vec{r}^{\prime}}{r^{\prime}}
$$

so the dipole potential is

$$
\begin{align*}
V_{\text {dip ole }}(\vec{r}) & =\frac{1}{4 \pi \varepsilon_{0}} \frac{1}{r^{2}} \int \rho\left(\vec{r}^{\prime}\right) r^{\prime} \frac{\hat{r} \cdot \vec{r}^{\prime}}{r^{\prime}} d \tau^{\prime} \\
& =\frac{1}{4 \pi \varepsilon_{0}} \frac{1}{r^{2}} \hat{r} \cdot \int \rho\left(\vec{r}^{\prime}\right) \vec{r}^{\prime} d \tau^{\prime} \\
& =\frac{1}{4 \pi \varepsilon_{0} r^{2}} \hat{r} \cdot \vec{p} \tag{3}
\end{align*}
$$

where

$$
\begin{equation*}
\vec{p}=\int \rho\left(\vec{r}^{\prime}\right) \vec{r}^{\prime} d \tau^{\prime} \tag{4}
\end{equation*}
$$

is the dipole moment of the charge distribution. Notice that this integral may depend on the choice of origin, because \vec{r}^{\prime} does. However, if the total charge Q is zero, then \vec{p} is independent of origin. To see this, let \vec{p}_{1} be the dipole moment with respect to origin $1, \vec{p}_{2}$ with respect to origin 2 , and let \vec{r}_{12} be the position of origin 2 with respect to origin 1 . Then

$$
\begin{align*}
\vec{p}_{1} & =\int \rho\left(\vec{r}^{\prime}\right) \vec{r}_{1}^{\prime} d \tau^{\prime}=\int \rho\left(\vec{r}^{\prime}\right)\left(\vec{r}_{12}+\vec{r}_{2}^{\prime}\right) d \tau^{\prime} \\
& =\vec{r}_{12} \int \rho\left(\vec{r}^{\prime}\right) d \tau^{\prime}+\int \rho\left(\vec{r}^{\prime}\right) \vec{r}_{2}^{\prime} d \tau^{\prime} \\
& =Q \vec{r}_{12}+\vec{p}_{2} \tag{5}
\end{align*}
$$

So if $Q=0$, then $\vec{p}_{1}=\vec{p}_{2}$.
This is an example of a more general result:
The first non-zero multipole moment is independent of origin.
Result (5) also explains the results we obtained in our very first example for the dipole moment of the two point charges. A charge that is not at the origin but at position \vec{r}_{Q} contributes a dipole moment $Q \vec{r}_{Q}$ with respect to that origin.

An ideal or "pure" dipole is located at a single point. That is, it is the dipole moment of two equal and opposite point charges separated by a distance d in the limit that $d \rightarrow 0$. In order that \vec{p} not be zero, we have to let $q \rightarrow \infty$.

$$
\vec{p}=\lim _{q \rightarrow \infty} \lim _{d \rightarrow 0} q \vec{d}
$$

where, as we take the limit, we hold the product $q d=p$ constant. The vector \vec{d} points from the negative charge to the positive charge in the pair. (Griffiths uses the term "pure", but I don't like it. I think "ideal" is more appropriate.)

Equation (2) gives the potential at a point on the polar axis as a series in powers of $1 / r$. It does not give us the potential at other points. However, the dipole potential (3) is valid everywhere. It may be written

$$
V_{\text {dip ole }}(r, \theta)=\frac{1}{4 \pi \varepsilon_{0} r^{2}} \hat{r} \cdot \vec{p}=\frac{1}{4 \pi \varepsilon_{0} r^{2}} p \cos \theta
$$

where θ is the angle between \vec{p} and \vec{r}, that is, it is the polar angle in a coordinate system with polar axis along \vec{p}. Then we have

$$
\begin{equation*}
V_{\text {dipole }}(r, \theta)=\frac{p}{4 \pi \varepsilon_{0} r^{2}} P_{1}(\cos \theta) \tag{6}
\end{equation*}
$$

The dipole itself, remember, has z-component (from 2 with $l=1$)

$$
p_{z}=\int \rho\left(\vec{r}^{\prime}\right) r^{\prime} P_{1}\left(\mu^{\prime}\right) d \tau^{\prime}
$$

and it is not coincidental that P_{1} shows up again in (6). In fact, if our charge distribution has azimuthal symmetry about an axis that we choose as our polar axis, then we may write:

$$
\begin{equation*}
V(r, \theta)=\frac{1}{4 \pi \varepsilon_{0} r} \sum_{l=0}^{\infty} \frac{P_{l}(\cos \theta)}{r^{l}} \int \rho\left(\vec{r}^{\prime}\right)\left(r^{\prime}\right)^{l} P_{l}\left(\mu^{\prime}\right) d \tau^{\prime} \tag{7}
\end{equation*}
$$

We still do not have a completely general result, and that will have to wait until Physics 704.

Example:
A hemisphere of radius a contains charge density $\rho=\rho_{0} \frac{z}{a}+\rho_{1} \frac{r^{2}}{a^{2}}$. Find the monople, dipole and quadrupole moments of this charge distribution, and hence find the potential at distance $r \gg a$ from the hemisphere.

The monopole is the total charge.

$$
\begin{aligned}
Q & =\int \rho(r, \theta) 2 \pi r^{2} \sin \theta d \theta d r \\
& =2 \pi \int_{0}^{a} r^{2} d r \int_{0}^{1}\left(\rho_{0} \frac{r \mu}{a}+\rho_{1} \frac{r^{2}}{a^{2}}\right) d \mu \\
& =\left.2 \pi \int_{0}^{a} r^{2} d r\left(\rho_{0} \frac{r \mu^{2}}{2 a}+\rho_{1} \frac{r^{2}}{a^{2}} \mu\right)\right|_{0} ^{1} \\
& =2 \pi\left(\rho_{0} \frac{r^{4}}{8 a}+\rho_{1} \frac{r^{5}}{5 a^{2}}\right) \\
& =2 \pi a^{3}\left(\frac{\rho_{0}}{8}+\frac{\rho_{1}}{5}\right)
\end{aligned}
$$

The dipole moment is

$$
\vec{p}=\int \rho \vec{r} d \tau=\int \rho(r, \theta)(z \hat{z}+x \hat{x}+y \hat{y}) r^{2} \sin \theta d \theta d \phi d r
$$

Only the z-component is non-zero, because

$$
x=r \sin \cos \phi
$$

and

$$
\int_{0}^{2 \pi} \cos \phi d \phi=0
$$

The y-component vanishes similarly.

Then

$$
\begin{aligned}
p_{z} & =2 \pi \int_{0}^{a} \int_{0}^{1}\left(\rho_{0} \frac{r \mu}{a}+\rho_{1} \frac{r^{2}}{a^{2}}\right)(r \mu) r^{2} d \mu d r \\
& =2 \pi \int_{0}^{a} \int_{0}^{1}\left(\rho_{0} \frac{r^{4} \mu^{2}}{a}+\rho_{1} \frac{r^{5} \mu}{a^{2}}\right) d \mu d r \\
& =2 \pi \int_{0}^{a}\left(\rho_{0} \frac{r^{4}}{3 a}+\rho_{1} \frac{r^{5}}{2 a^{2}}\right) d r \\
& =2 \pi a^{4}\left(\frac{\rho_{0}}{15}+\frac{\rho_{1}}{12}\right) \\
& =\frac{2 \pi a^{4}}{3}\left(\frac{\rho_{0}}{5}+\frac{\rho_{1}}{4}\right)
\end{aligned}
$$

Finally the quadrupole is

$$
\begin{aligned}
q_{z z} & =\int \rho(\vec{r}) r^{2} P_{2}(\mu) d \tau \\
& =2 \pi \int_{0}^{a} \int_{0}^{1}\left(\rho_{0} \frac{r \mu}{a}+\rho_{1} \frac{r^{2}}{a^{2}}\right) r^{2} \frac{1}{2}\left(3 \mu^{2}-1\right) r^{2} d r d \mu \\
& =\pi \int_{0}^{a} \int_{0}^{1}\left(\rho_{0} \frac{r^{5}}{a}\left(3 \mu^{3}-\mu\right)+\rho_{1} \frac{r^{6}}{a^{2}}\left(3 \mu^{2}-1\right)\right) d r d \mu \\
& =\pi \int_{0}^{a}\left(\rho_{0} \frac{r^{5}}{a}\left(\frac{3}{4}-\frac{1}{2}\right)+\rho_{1} \frac{r^{6}}{a^{2}}(1-1)\right) d r \\
& =\pi a^{5} \frac{\rho_{0}}{6}\left(\frac{1}{4}\right)=\pi a^{5} \frac{\rho_{0}}{24}
\end{aligned}
$$

Thus the potential is

$$
\begin{aligned}
V(r, \theta) & =\frac{1}{4 \pi \varepsilon_{0}}\left\{\frac{Q}{r}+\frac{p_{z} \cos \theta}{r^{2}}+\frac{q_{z z}}{r^{3}} P_{2}(\cos \theta)+\cdots\right\} \\
& =\frac{\pi a^{3}}{4 \pi \varepsilon_{0} r}\left\{2\left(\frac{\rho_{0}}{8}+\frac{\rho_{1}}{5}\right)+\frac{2 a}{3 r}\left(\frac{\rho_{0}}{5}+\frac{\rho_{1}}{4}\right) \cos \theta+\frac{\rho_{0}}{24} \frac{a^{2}}{r^{2}} \frac{1}{2}\left(3 \cos ^{2} \theta-1\right)+\cdots\right\} \\
& =\frac{\pi a^{3}}{4 \pi \varepsilon_{0} r}\left\{\frac{\rho_{0}}{4}+2 \frac{\rho_{1}}{5}+\frac{2 a}{3 r}\left(\frac{\rho_{0}}{5}+\frac{\rho_{1}}{4}\right) \cos \theta+\frac{\rho_{0}}{48} \frac{a^{2}}{r^{2}}\left(3 \cos ^{2} \theta-1\right)+\cdots\right\}
\end{aligned}
$$

Are there more terms? Yes there are.

$$
\int\left(\rho_{0} \frac{r \mu}{a}+\rho_{1} \frac{r^{2}}{a^{2}}\right) r^{l} P_{l}(\mu) d \tau=\frac{2 \pi}{a} \int_{0}^{a} r^{l+3} d r \int_{0}^{1}\left[\rho_{0} \mu P_{l}(\mu)+\rho_{1} \frac{r}{a} P_{l}(\mu)\right] d \mu
$$

Now if l is even, then $P_{l}(\mu)$ is an even function of μ, but $\mu P_{l}(\mu)$ is odd. But if l is odd, then $\mu P_{l}(\mu)$ is even. For an even function

$$
\int_{0}^{1} f(\mu) d \mu=\frac{1}{2} \int_{-1}^{1} f(\mu) d \mu
$$

Thus for l even

$$
\int_{0}^{1} P_{l}(\mu) d \mu=\frac{1}{2} \int_{-1}^{1} P_{0}(\mu) P_{l}(\mu) d \mu=0 \text { unless } l=0
$$

We already found that this is true for $l=2$ above. Then for l odd

$$
\int_{0}^{1} \mu P_{l}(\mu) d \mu=\frac{1}{2} \int_{-1}^{1} P_{1}(\mu) P_{l}(\mu) d \mu=0 \text { unless } l=1
$$

Thus there are higher multipoles, but for $l>1$, all even multipoles involve only ρ_{0} but all odd multipoles involve only ρ_{1}.

Plot

$V(r, \theta)=\frac{\pi a^{3} \rho_{0} a}{4 \pi \varepsilon_{0} a r}\left\{\frac{1}{4}+2 \frac{\rho_{1}}{5 \rho_{0}}+\frac{2 a}{3 r}\left(\frac{1}{5}+\frac{\rho_{1}}{4 \rho_{0}}\right) \cos \theta+\frac{1}{48} \frac{a^{2}}{r^{2}}\left(3 \cos ^{2} \theta-1\right)+\cdots\right\}$
Thus

$$
\frac{V(r, \theta)}{\frac{\pi a^{3} \rho_{0}}{4 \pi \varepsilon_{0} a}}=\left(\frac{1}{4}+2 \frac{\rho_{1}}{5 \rho_{0}}\right) \frac{a}{r}+\frac{2 a^{2}}{3 r^{2}}\left(\frac{1}{5}+\frac{\rho_{1}}{4 \rho_{0}}\right) \cos \theta+\frac{1}{48} \frac{a^{3}}{r^{3}}\left(3 \cos ^{2} \theta-1\right)+\cdots
$$

Now suppose $\rho_{1}=\rho_{0} / 2$. Then

$$
\begin{aligned}
\frac{V(r, \theta)}{\frac{\pi a^{3} \rho_{0}}{4 \pi \varepsilon_{0} a}} & =\left(\frac{1}{4}+\frac{1}{5}\right) \frac{a}{r}+\frac{2 a^{2}}{3 r^{2}}\left(\frac{1}{5}+\frac{1}{8}\right) \cos \theta+\frac{1}{48} \frac{a^{3}}{r^{3}}\left(3 \cos ^{2} \theta-1\right)+\cdots \\
& =\frac{9}{20} \frac{a}{r}+\frac{13}{60} \frac{a^{2}}{r^{2}} \cos \theta+\frac{1}{48} \frac{a^{3}}{r^{3}}\left(3 \cos ^{2} \theta-1\right)+\cdots
\end{aligned}
$$

Green 0.15, Black 0.1 red 0.05
Notice how the equipotential surfaces get more spherical as distance from the hemisphere (in blue) increases.

