
Physics 460 Fall 2006 Susan M. Lea
Let’s start o¤ by reviewing what we accomplished in Physics 360. We

learned how to investigate the behavior of electromagnetic systems that are
constant in time. We derived Maxwell’s equations in the static limit. They
are:

Coulomb’s law (Gauss’s Law) : ~r ¢ ~E =
ρ

ε0
(1)

Gauss’s Law for ~B : ~r ¢ ~B = 0 (2)

~r £ ~E = 0 (3)

Ampere’s Law : ~r £ ~B = µ0
~j (4)

We used these equations to derive the potentials V and ~A and the equations
they satisfy:

~r £ ~E = 0 ) ~E = ¡~rV

~r ¢ ~E =
ρ

ε0
) r2V = ¡ ρ

ε0

~r ¢ ~B = 0 ) ~B = ~r £ ~A

~r £ ~B = µ0
~j ) ~r

³
~r ¢ ~A

´
¡ r2 ~A = ¡µ0

~j

Here we add the Gauge condition

Coulomb Gauge: ~r ¢ ~A = 0

to obtain
r2 ~A = µ0

~j

If we use Cartesian components, each component of ~A as well as V satisfies
Poisson’s equation:

r2 (function) = (source)

In a region where the sources are zero, we have Laplace’s equation:

r2 (function) = 0

and we learned how to solve this equation making use of boundary conditions
at the edges of the region.

We also derived expressions for the electric energy density:

uE =
1

2
ε0E

2

and the charge conservation equation

∂ρ

∂t
+ ~r ¢~j = 0 (5)

Finally, we showed how to use the auxiliary fields ~D = ε ~E and ~H = ~B/µ to
simplify discussion of fields in media.

Now it is time to expand our discussion to allow for time variation in the
sources and the fields: we are to study Electrodynamics.
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1 Current and resistance

1.1 Current

We start with some practical examples of systems where charges are moving.
Every current consists of moving charges. As we found in Physics 360 (see
360notes12)

~j = ne~v

where n is the number density of charged particles, e the charge per particle, and
~v the velocity of each particle. Conductors are systems than contain charges
free to move under the application of applied forces. Such systems usually
exhibit resistance. Like mechanical systems with friction, a force is needed to
start a particle moving, and the moving particles may reach a constant speed
with the applied force balancing the frictional force. The electrical systems
reach a state with constant current

~j = σ
~F

q
= σ ~f

where

~f =
~F

q

is the force per unit charge. The constant of proportionality σ is the conductivity

σ =
1

ρ

and ρ is the resistivity. The resistivity of a good conductor like copper is
around 10¡8 ¢m; for semiconductors like silicon the value is around 103, while
for insulators like wood the value is around 1011.

While any force can in principle cause a current, we are going to be interested
in electromagnetic forces:

~F = q
³

~E + ~v £ ~B
´

so that
~j = σ

³
~E + ~v £ ~B

´
(6)

This relation is often called Ohm’s law, although strictly it is not. What
Ohm actually stated is that resistance is independent of current. This result
follows from equation (6) if σ is independent of current. This is almost true
for materials like copper, as we shall see. In most ordinary conductors we may
often ignore the ~v £ ~B term because v is small (¿ c), and the e¤ects of ~B are
often balanced by additional components of ~E (as in the Hall e¤ect- see below).

2



1.2 Resistance
Let’s find the relation between the resistance of a circuit component and its
fundamental properties (shape, size, material). Let the resistor be made of
uniform material of resistivity ρ, and have a length ` (parallel to ~E) and a
cross-sectional area A that is constant along its length. Then the current may
be expressed in terms of the current density as

I = jA

(Remember: current = flux of current density)

I = jA = σEA

Now we may express E (assumed uniform along the length `) in terms of the
potential di¤erence:

E =
¢V

`

and so

I =
σA

`
¢V

or

¢V = I

µ
`ρ

A

¶
= IR (7)

a more familiar version of "Ohm’s Law". Thus the resistance is

R = ρ
`

A
(8)

It is easy to understand this result: like water flowing down a pipe, current flows
more easily when the area of the "pipe" (the circuit component) is greater, and
less easily when the length is greater.

We made quite a few assumptions here, and we should verify them. First,
is the electric field uniform? We would set up the circuit by applying a fixed
potential di¤erence ¢V using a battery or generator. Once the system reaches
equilibrium, which it will do in a time of order `/c, that leaves us with a static
boundary value problem to solve. Let’s ground one end of the resistor for
simplicity. Then we have

V = 0 at z = 0

V = V0 at z = `

and
r2V = ¡

ρq

ε0

where I have used the subscript q on the charge density to distinguish it from
resistivity. But what is ρq? Well, we found that in a static situation without
currents, the charge density is zero inside a conductor. If the currents are
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steady (we have reached equilibrium) then the charge density, zero or not, is
also constant. But then, from charge conservation (eqn 5)

∂ρq

∂t
= 0 = ¡~r ¢~j = ¡~r ¢

³
σ ~E

´

and if the material is uniform so that σ = constant, then, using equation (1)

0 = ~r ¢
³
σ ~E

´
= σ~r ¢ ~E = σ

ρq

ε0

Then the charge density is zero, and so V satisfies Laplace’s equation. In
addition, current flows along the cylinder, but not across the boundaries into
the space outside, so

~j ¢ n̂ = σ ~E ¢ n̂ = ¡σn̂ ¢ ~rV = 0

Thus either V or its normal derivative is known everywhere on the surface of
the resistor, so the uniqueness theorem tells us that there is one unique solution
for the potential. A simple solution that satisfies all the conditions is

V = V0
z

`

with a uniform ~E
~E = ¡~rV = ¡V0

ẑ

`

as we assumed above.
We have proved a very powerful theorem:

In a material of uniform conductivity carrying a steady current, the charge
density is zero.

Note that this does not prohibit non-zero surface charge density on the
boundaries, and in general these surface charges are necessary for a self-consistent
solution.

Now let’s investigate what happens when the cross-sectional area is not a
constant. Suppose the circuit component is a cylindrical shell with radii a < b,
and we apply the potential di¤erence so that the inner surface at s = a has
potential V0 and the outer surface at s = b has potential zero. Then the
appropriate solution of Laplace’s equation is (360notes8 page 8)

V = C1 lns + C2

To get V = 0 at s = b and V = V0 at s = a, we choose the constants as follows:

V =
V0

ln a/b
ln

ρ

b

with electric field
~E = ¡~rV = ¡ V0

lna/b

ŝ

s
=

V0

ln b/a

ŝ

s
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where the second expression has ln b/a > 0, and thus shows that ~E points
outward. The total current through a cylindrical surface of radius s

I =

Z
~j ¢ n̂ dA = σ

Z `

0

Z 2π

0

~E ¢ ŝ sdθdz

= σ
V0

ln b/a
`

Z
sdθ

s
= σ

V0`

ln b/a
2π

The result is independent of s, showing that the current is constant throughout
the resistor, as expected. The resistance is

R =
¢V

I
=

V0

2πσ`V0
ln

b

a
= ρ

ln b/a

2π`

Gri¢ths’ Example 7.2 introduces the charge per unit length on the cylinder,
which is unnecessary and involves the additional assumption that the electric
field inside the inner cylinder is zero. If the field for s < a is zero, we could use
our solution to find λ from the given value of V0.

Both Gri¢ths and LB discuss the "Drude" model for conductivity, and you
should definitely look at it, bearing in mind that modern quantum theories are
quite a bit di¤erent. Graduate students should look up what Feynmann has to
say on the subject.

As a result of the many collisions undergone by the moving electrons, the
work done by the battery increases the thermal energy of the resistor. The
amount of charge passing through potential di¤erence ¢V in time t is

Q = It

and the work done by the battery is

W = Q¢V = It¢V

thus the power delivered to the charges is

P =
W

t
= I¢V = I2R =

R2

¢V

This power serves to heat the resistor, thus increasing the temperature and
changing the resistance. This e¤ect is used to advantage in electric toasters,
hair dryers, and light bulbs, but is a nuisance in TV sets, for example. It is
sometmes called Joule heating.

We should remember several important facts from this discussion of steady
currents in circuits. First, each circuit has a self-consistent distribution of
charge, with resulting fields and potential di¤erences. Charge densities occur
only where the electrical properties change— usually at the surface of wires,
the ends of resistors, and similar places. As we saw with conductors in Phys
360, each charge moves a tiny distance to establish the equilibrium, and the
timescale to establish equilibrium is the time for the fields to adjust, equal to
(length scale of system)/(speed of light). The self-consistent fields serve to
distribute the e¤ects of batteries, for example, around the circuit.
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2 EMF

2.1 Batteries

The influence of the external agent that drives the circuit (battery, photvoltaic
cell, whatever) is often described by a quantity called EMF or elctro-motive
force. It is not a force at all, but the line integral of the force per unit charge
around the circuit:

E =

I
~fext ¢ d~̀

Once the circuit reaches equilibrium (very fast! see above), the self-consistent
electrostatic fields don’t contribute, because (eqn 3)

~r £ ~E = 0 ()
I

~E ¢ d~̀ = 0

Thus E reflects the contribution of the external agent.
For an ideal battery with zero internal resistance, the net force on the charges

inside the battery is zero. This force has two components, one electrical and
chemical, so they have to balance.

Z term inal b

term inal a

³
~E + ~fex t

´
¢ d~̀ = 0

So the potential di¤erence across the battery is

Va ¡ Vb =

Z t erm inal b

terminal a

~E ¢ d~̀ = ¡
Z term ina l b

term inal a

~fex t ¢ d~̀

= ¡
Z term inal b

term inal a,inside batt ery

~fex t ¢ d~̀ ¡
Z term inal b

term inal a,outside battery t

~fext ¢ d~̀

=

I
~fext ¢ d~̀ = E

where we used the fact that fext = 0 outside the battery to add the extra (zero)
term in line 2. See LB §26.1 for batteries with internal resistance.

2.2 Motional emf
Motional emf arises whenever a conductor moves through a magnetic field, and
is the basis for simple generators. To see how it works, let’s consider a simple
rectangular loop with a resistance R on one side, as in Gri¢ths Figure 7.10.
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On side ab, every electron in the wire experiences a magnetic force per unit
charge

~fma g = ~v £ ~B = vB [x̂ £ (¡ẑ)] = vBŷ

Thus we have an EMF at the instant shown of

E =

I
~fm ag ¢ d~̀ = vBh

where the integral was taken clockwise around the loop. There is no contribution
from other segments of the loop because either ~B = 0 or ~v £ ~B is perpendicular
to d~l. This emf drives a current clockwise around the loop. The segment ab
then experiences a magnetic force due to the current of

~F =

Z b

a

Id~l £ ~B = IhB (¡x̂)

Segments bcand da experience forces too, but they are equal and opposite, and
sum to zero. Thus the net force on the loop is in the minus-x direction, and
if nothing else is done the motion of the loop stops, the EMF! 0, and the
current! 0. But if we pull the loop to the right with a balancing force

~Fpull = ¡~Fm ag = IhBx̂

we can keep the motion going. We have to do work at a rate

P = ~Fpull ¢ ~v = IhBv

The electrical power expended in the circuit is

P = I2R = IE = IvBh
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The two powers are equal, as they must be. Remember: magnetic force does
no work!

Motional emf occurs whenever the size, shape or orientation of a loop changes
and a magnetic field is present. It is one example of Faraday’s law, which may
be expressed in the more general form

jEj =

¯̄
¯̄d©B

dt

¯̄
¯̄ (9)

(Notice the absolute value signs!) The magnetic flux through the loop is

©B =

Z
~B ¢ n̂ dA

where the integral is over a surface spanning the loop and n̂ is the usual normal
to the surface element dA. In our case, with normal chosen into the paper (the
¡ẑ direction, parallel to ~B) we have

©B = Bh (¡x)

(Notice that x is the location of side ab with respect to the edge of the magnetic
field region, and is negative). Thus

d©B

dt
= ¡Bh

dx

dt
= ¡Bhv

Thus we get the right value for jEj . Putting the signs back, we have

E =

I
~fm ag ¢ d~̀ = ¡d©B

dt
= ¡ d

dt

Z
~B ¢ n̂ dA (10)

where now the directions of n̂ and d~̀ are related through the usual right hand
rule.

The time derivative of flux is non-zero if ~B changes, n̂ changes or the area
changes. In our case the area with non-zero B is decreasing. But when ~B
changes we don’t call it motional emf any more.

Equation (10) is the integral form of Faraday’s law, and it includes the
case of a static loop with changing ~B as well as the motional emf’s we have
already discussed. To use it correctly, you must choose a direction for d~̀ (that
is, a direction for going around the loop) and then choose the direction for the
normal n̂ according to the right hand rule. Equivalently, you can use equation
(9) to relate the magnitudes of the emf and the rate of change of flux, and use
Lenz’s law to get the directions right.

Lenz0s law: The induced emf opposes the change that creates it.

Lenz’s law is a statement of energy conservation: without it we could build
perpetual motion machines that would run forever without any energy input.
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When the loop is stationary but the magnetic field changes, there is no
magnetic force because ~v = 0. So what causes the emf? It is an electric field:
an induced electric field whose source is the changing ~B. In this case the emf is

E =

I
~Eind ¢ d~̀

Now for the static (or Coulomb) electric fields we have previously discussed,
according to equation 3, I

~Ecoulo mb ¢ d~̀ = 0

So we can add ~Ecoulo mb to get

E =

I

C

³
~Eind + ~Ecoulo mb

´
¢ d~̀ =

I

C

~Etotal ¢ d~̀ (11)

and then Faraday’s law becomes

E =

I

C

~Etota l ¢ d~̀ = ¡ d

dt

Z
~B ¢ n̂ dA (12)

But here it is important to note that the electric field is measured in the rest
frame of the line segment d~̀. It is the electric field felt by an electron in the
wire that would actually cause the electron to move.

It is important to note that equation (12) applies to any curve C whether
or not there is actually a wire there. It there is a conducting wire coincident
with the curve, the emf will cause a current to flow. If there is no conducting
wire, the induced electric field still exists, but no current flows.

2.3 Calculating induced electric field

The method for calculating induced electric field is outlined in LB §30.4. As
with the use of Gauss’ Law and Ampere’s law in integral form, we can only find
the induced ~E when there is su¢cient symmetry. Let’s look at an example.

A solenoid with n turns per unit length carries a current I that is increasing
at a constant rate dI/dt. The field inside a uniform solenoid is uniform and
parallel to the solenoid axis, with magnitude B = µ0nI. Thus as I increases,
B increases too.

dB

dt
= µ0n

dI

dt

Equation (12) shows that the induced field bears a similar relation to its source
(changing magnetic flux) as magnetic field does to its source (current)

I

C

~B ¢ d~̀ = µ0

Z
~j ¢ n̂ dA
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There is a sign di¤erence, which means that ~Eind curls around the changing flux
according to a left-hand rule. Thus our solenoid produces ~E in the same way
that a wire with uniform ~j produces ~B : the field lines form circles centered on
the solenoid axis. If we rotate the solenoid about its axis, the picture doesn’t
change, so ~E = Eθ (s) θ̂

Then we place a circle with radius s centered on the axis of the solenoid,
and go around it in the direction shown in (b).

I

C

~E ¢ d~̀ = 2πsEθ

With this choice for going around C, n̂ = ẑ, and the flux is

©B = πs2B

then Faraday’s law becomes

2πsEθ = ¡πs2µ0n
dI

dt

and

Eθ = ¡ s

2
µ0n

dI

dt

The direction of ~E is ¡θ̂, as shown in the diagram. Notice that if we put a
wire loop in the location of our curve, current would flow in the ¡θ̂ direction,
and that current would produce ~B in the ¡ẑ direction, thus reducing the rate
at which ~Binside increases. This is required by Lenz’s law.

Something interesting happens if we use a wire loop with a small gap of
width w in it (see LB pg 970). Now current cannot flow continuously because of
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the gap. There is a burst of current as we begin to increase I, and that current
causes a build-up of charge on the surfaces of the wire, including the cut ends.

Once equilibrium is established, the net electric field inside the conducting ma-
terial is zero:

~Eind + ~Ecoul = 0

and thus
~Ecoul = ¡~Einduced

The induced electric field is the same everywhere on the circle, but the Coulomb
field changes direction in the gap, because

I

c irc le

~Eco ul ¢ d~̀ = 0

Thus the total electric field is very large in the gap. Applying Faraday’s law:
¯̄
¯̄
¯̄

I

circ le

~Etota ll ¢ d~̀

¯̄
¯̄
¯̄ = πs2µ0n

dI

dt
=

¯̄
¯̄
Z

gap

~Etota l ¢ d~̀
¯̄
¯̄

' Etota l,gap w

and

Et otal,g ap =
πs2µ0n

w

dI

dt

Heinrich Hertz used a device like this as an antenna in his discovery of EM
waves.

2.4 Di¤erential form of Faraday’s law
Now we want to get the di¤erential equation that coresponds to equation (12).

E =

I

C

~Etota l ¢ d~̀ = ¡ d

dt

Z
~B ¢ n̂ dA
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We start with a curve that is at rest, so the only thing that is changing is ~B.
Then we can move the time derivative inside the integral on the right, and apply
Stokes’ theorem to the integral on the left:

I

C

³
~r £ ~Etotal

´
¢ n̂ dA = ¡

Z
∂

∂t
~B ¢ n̂ dA

Since this relation applies to any curve C, we must have

~r £ ~E = ¡ ∂

∂t
~B (13)

This equation replaces equation (3), which is valid only for static fields.
To extend this to moving curves, let’s start with a curve that has a uniform,

constant, non-relativistic velocity ~v. There is an additional contribution to the
change in flux as the curve moves to a region with a di¤ering value of ~B. Using
a Taylor series expansion, we have:

B (~r + δ~r) = B (~r +~vδt) = ~B (~r) +
³
~v ¢ ~r

´
~Bδt + ¢ ¢ ¢

Thus
B (~r + δ~r) ¡ ~B (~r) = δ ~B =

³
~v ¢ ~r

´
~B δt

to first order in δt. Thus the change in flux due to motion of the curve is:

δ©m =

Z

S

δ ~B ¢ n̂ dA =

Z

S

³
~v ¢ ~r

´
~B ¢ n̂ dAδt

and hence
d

dt
©m =

Z

S

³
~v ¢ ~r

´
~B ¢ n̂ dA

due to motion of the curve. Adding the two contributions, we have

d

dt
©m

¯̄
¯̄
tot al

=

Z

S

∂

∂t
~B ¢ n̂ dA +

Z

S

³
~v ¢ ~r

´
~B ¢ n̂ dA

and applying Faraday’s law:
I

C

~E0 ¢ d~̀ = ¡
½Z

S

∂

∂t
~B ¢ n̂ dA +

Z

S

³
~v ¢ ~r

´
~B ¢ n̂ dA

¾

Remember: the electric field ~E 0 is measured in the rest frame of d~̀, i.e. the
frame moving with velocity ~v with respect to the lab, and ~B is measured in the
lab frame.

Now we want to convert the last term on the right to a line integral, so we
use a result from the cover of Gri¢ths:

~r £
³

~B £ ~v
´

=
³
~v ¢ ~r

´
~B ¡

³
~B ¢ ~r

´
~v + ~B

³
~r ¢ v

´
¡ ~v

³
~r ¢ ~B

´
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But here we have chosen ~v to be constant, and from the second Maxwell equa-
tion, ~r ¢ ~B = 0, so only the first term on the right is non-zero:

~r £
³

~B £ ~v
´

=
³
~v ¢ ~r

´
~B

Thus
I

C

~E 0 ¢ d~̀ = ¡
½Z

S

∂

∂t
~B ¢ n̂ dA +

Z

S

h
~r £

³
~B £~v

´i
¢ n̂ dA

¾

= ¡
Z

S

∂

∂t
~B ¢ n̂ dA ¡

Z

C

³
~B £ ~v

´
¢ d~̀

where we used Stokes’ theorem again in the second step. Comparing with
equations (13), we may replace the integral of ∂

∂t
~B with a line integral involving

~E in the lab frame1 :
I

C

~E0 ¢ d~̀ =

I

C

~E ¢ d~̀ +

I ³
~v £ ~B

´
¢ d~̀ =

I
~f ¢ d~̀

where again the result is true for any curve C moving at constant velocity ~v.
Thus we obtain the transformation law:

~E 0 = ~E +~v £ ~B

The result is consistent with the Lorentz force law, and with our previous dis-
cussion of motional emf. Thus we have established that the constant of pro-
portionality in Faraday’s law is linked to the transformation properties of the
electric field. We’ll discuss this further later in the semester.

2.5 More on potential
Now that we have changed equation 3 to equation 13, we must rethink our ideas
about potential. Since ~r £ ~E is no longer zero, we cannot conclude that ~E is
the gradient of a scalar function. But equation (2) still holds, so we may still
conclude that

~B = ~r £ ~A

Now we insert this into Faraday’s law:

~r £ ~E = ¡ ∂

∂t
~B = ~r £ ~E = ¡ ∂

∂t
~r £ ~A = ¡~r £ ∂

∂t
~A

Thus

~r £
Ã

~E +
∂ ~A

∂t

!
= 0

1 Strictly, we must apply Faraday’s law to a curve C0 at rest in the lab that instantaneously
coincides with the moving curve C.

13



Now we can conclude that the vector

~E +
∂ ~A

∂t

is the gradient of a scalar function:

~E +
∂ ~A

∂t
= ¡~rV

and thus

~E = ¡~rV ¡ ∂ ~A

∂t
= ~Ecoulom b + ~Einduced

We can confirm this decomposition of ~E by re-inserting this expression for ~E
into Gauss’ law:

~r ¢ ~E = ¡r2V ¡ ~r ¢ ∂ ~A

∂t

= ¡r2V ¡ ∂

∂t
~r ¢ ~A =

ρ

ε0

If we use the Coulomb gauge as we did in the static case, then ~r ¢ ~A = 0, and
we get

r2V = ¡ ρ

ε0

This confirms that the source of V is the charge density, and thus ¡~rV is
the Coulomb field. We may not always want to use this Gauge condition in
time dependent cases, and we’ll have more to say about this later, but the
decomposition still holds.

This mathematical decomposition of ~E into induced and Coulomb fields is
very useful, but of course if we put a test charge down and measure ~E as
~F /qtest we’ll measure the whole ~E : we won’t be able to measure any di¤erence
between the two kinds of ~E. It is important to remember that only Coulomb
fields contribute to the scalar potential V :

VA ¡ VB =

Z B

A

~EC oulom b ¢ d~̀

Now let’s return to motional emf and see how this plays out.
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First look at a simple circuit with a battery and a resistor. In this circuit power
flows from the battery and is used in the resistor (we’ll worry about how it gets
there later). There is a potential di¤erence across the resistor: ¢V = IR = E .

Now look at a similar circuit in which the power source is a person pulling
a conducting rod on conducting rails through a magnetic field:

There is a motional emf of magnitude E =`vB. But the net electric field
in the conducting rod on the right must be zero, so the magnetic force drives
charges to the sides of the circuit as shown, positive on the top and negative on
the bottom, leading to the production of a Coulomb electric field that in turn
produces a potential di¤erence across the resistor at the left. It is the electric
field that drives current through the resistor.

Now we change the situation just a bit, by moving the resistance to the
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moving rod, as shown below:

The net force on a charge in the resistor is the magnetic force ~F = q~v£ ~B, and it
is this force that drives current in the circuit. There are no charge distributions,
no potentials, and no Coulomb electric fields. The net emf is of course the same
as in the second circuit, but because the power is used in the same place as it
is produced (in the moving rod), there is no need to transfer energy to another
place in the circuit. The potential distribution in a circuit shows us how energy
is stored and redistributed throughout the system.

3 Inductance
Capacitors are devices that store energy — electric field energy — in circuits.
There are equivalent devices for storing magnetic field energy. They are induc-
tors. Here’s how it works. Suppose we have two current loops, one carrying
current I1 and one carrying current I2. Each loop produces magnetic field, ac-
cording to the Biot-Savart law. The magnetic field produced by loop 1 threads
through both loop 1 and loop 2. B1 is proportional to I1 :

~B1 =
µ0

4π
I1

I
d~̀1 £ ~R

R2

and thus the flux of ~B1 through loop 2 is also proportional to I1 :

©2 due to 1 =

Z

S2

~B1 ¢ n̂ dA2 =
µ0

4π
I1

Z

S2

ÃI
d~̀

1 £ ~R

R2

!
¢ n̂ dA2 = M21I1

The constant of proportionality is called the mutual inductance M21. We can
express it more nicely using the vector potential and Stokes’ theorem:

©2 due to 1 =

Z

S2

~B1 ¢ n̂ dA2 =

Z

S2

³
~r £ ~A1

´
¢ n̂ dA2 =

I

C2

~A1 ¢ d~̀2 (14)
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But we already have an expression for ~A :

~A1 =
µ0

4π
I1

I

C1

d~̀
1

R

and thus

M21I1 =
µ0

4π
I1

I

C2

I

C1

d~̀1

R
¢ d~̀

2

and thus

M21 =
µ0

4π

I

C2

I

C1

d~̀
1 ¢ d~̀

2

R
(15)

It is immediately clear from the symmetry of this expression that it doesn’t
matter which loop is labelled one and which is labelled two:

M21 = M12 = M

and it is also true that M is a purely geometrical property involving the size,
shape and relative position and orientation of the two loops.

Now if we change I1, we will change the flux of magnetic field through loop
2, and so there will be an emf induced in loop 2:

jE2j =

¯̄
¯̄d©2

dt

¯̄
¯̄ = M

¯̄
¯̄dI1

dt

¯̄
¯̄

Of course the flux through loop 1 also changes, and so there is also an induced
emf in loop 1.

jE2j =

¯̄
¯̄d©1

dt

¯̄
¯̄ = L

¯̄
¯̄dI1

dt

¯̄
¯̄

where L is the self-inductance (or just inductance) of loop 1.
We can estimate the inductance of a very long solenoid of length `, area A

with N turns. The field inside is uniform and equals

B = µ0nI

The flux through the solenoid is

© = N BA = µ0nNAI

and thus the inductance is

L =
©

I
= µ0nNA =

µ0N
2A

`
(16)
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4 Magnetic energy

Since the induced emf opposes the change that creates it (Lenz’s law), the
current in a circuit cannot jump instantly to its final value: it has to build up
slowly. Let’s look at a circuit with a resistor and an inductor (coil) and a
battery with emf E0. If we want to apply Kirchho¤ ’s loop rule, we can only
use values of potential V, not induced emfs. But if we model the coil as made
of perfectly conducting wire, then the total (Coulomb plus induced) field inside
the wire is zero. Thus

~EC oul = ¡~Einduced

and integrating along the wire we get

Z b

a

~ECo ul ¢ d~̀ = ¡
Z b

a

~Einduced ¢ d~̀

or

Va ¡ Vb = ¡Einduced = L
dI

dt

To be sure we have the signs right, let’s review the physics. The induced electric
field tries to oppose the increase of I in the direction of d~̀, so the Coulomb field
points in the same direction as the line segment d~̀, and since V decreases along
field lines, the potential is higher at the end a of the coil at which the current
enters, and is lower at b where the current leaves.

Now we are ready to use the loop rule:

E0 ¡ IR ¡ L
dI

dt
= 0

Choose a new variable x = I ¡ E0/R. Then since E0/R is constant,

L

R

dx

dt
= ¡x

which has solution
x = x0e

¡Rt/L

At time t = 0, x = x0 = 0 ¡ E0/R, so

I ¡ E0/R = ¡E0

R
exp

µ
¡Rt

L

¶

and

I =
E0

R

·
1 ¡ exp

µ
¡Rt

L

¶¸

The current exponentially approaches its final value If = E0/R. The timescale
τ = L/R governs how fast it approaches the final value. While it theoretically
takes infinite time to get to If, within 3τ the current is within e¡3 = 5% of the
final value.
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Now as the current is building up, the battery is pumping energy into the circuit
at a rate

Pbat tery = E0I =
E2

0

R

·
1 ¡ exp

µ
¡Rt

L

¶¸

and the resistor is using energy at a rate

Presisto r = I2R =
E 2

0

R

·
1 ¡ exp

µ
¡Rt

L

¶¸2

and these two rates are not the same. After a total time T, the energy put out
by the battery is

Ubattery =

Z T

0

Pba tterydt =
E2

0

R

Z T

0

·
1 ¡ exp

µ
¡Rt

L

¶¸
dt

=
E2

0

R

"
T +

L

R
exp

µ
¡Rt

L

¶¯̄
¯̄
T

0

#

=
E2

0

R

½
T +

L

R

·
exp

µ
¡RT

L

¶
¡ 1

¸¾

while the energy used by the resistor is

Uresistor =

Z T

0

Pres istordt =
E2

0

R

Z T

0

·
1 ¡ exp

µ
¡Rt

L

¶¸2

dt

=
E2

0

R

Z T

0

·
1 ¡ 2 exp

µ
¡Rt

L

¶
+ exp

µ
¡2

Rt

L

¶¸
dt

=
E2

0

R

½
T + 2

L

R

·
exp

µ
¡RT

L

¶
¡ 1

¸
¡ L

2R

·
exp

µ
¡2

RT

L

¶
¡ 1

¸¾

So we have

Ubattery ¡ Uresisto r =
E2

0

2R2
L

·
1 ¡ 2 exp

µ
¡RT

L

¶
¡ exp

µ
¡2

RT

L

¶¸

=
1

2
LI2 (17)
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This energy is stored in the inductor in the magnetic field. Indeed using equa-
tion (16) for the inductance of a solenoid,

¢U =
1

2

µ0N
2A

`
I2

=
1

2

µ0N
2Al

`2
I2 =

1

2
µ0n

2I2V

=
1

2

B2

µ0

V = uBV

where V = Al is the volume of the solenoid. Thus the magnetic energy density
is

uB =
1

2

B2

µ0

(18)

and thus the total energy ensity is

u =
1

2

µ
ε0E

2 +
B2

µ0

¶
(19)

We can get this result more generally, starting from (17) and using (14)

U =
1

2
LI2 =

1

2
©I =

I

2

I
~A ¢ d~̀

Now recall that we can get a more general expression by replacing Id~̀ with ~jdτ.
Then

U =
1

2

Z
~A ¢~j dτ (20)

and then from Ampere’s law (4)

U =
1

2µ0

Z
~A ¢

³
~r £ ~B

´
dτ

But
~r ¢

³
~A £ ~B

´
= ~B ¢

³
~r £ ~A

´
¡ ~A ¢

³
~r £ ~B

´

so

U =
1

2µ0

Z h
~B ¢

³
~r £ ~A

´
¡ ~r ¢

³
~A £ ~B

´i
dτ

We use the divergence theorem on the second term to get

U =
1

2µ0

·Z

V

~B ¢ ~B dτ ¡
Z

S

³
~A £ ~B

´
¢ n̂ dA

¸

The integral is over all space, and as long as our current is confined to a finite

region, then
¯̄
¯ ~A

¯̄
¯ ! 0 at least as fast as 1/R2 and B goes as 1/R3 (Remember

rule one for magnetic fields- the dominant term is a dipole!) Thus the surface
integral is zero, and we have

U =
1

2µ0

Z

V

B2 dτ
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5 Maxwell’s equations
The equations we have derived so far are

Coulomb’s law (Gauss’s Law): ~r ¢ ~E =
ρ

ε0
(21)

Gauss’s Law for ~B : ~r ¢ ~B = 0 (22)

Faraday’s law : ~r £ ~E = ¡∂ ~B

∂t
(23)

Ampere’s Law : ~r £ ~B = µ0
~j (24)

There is a nice symmetry about equations (21) and (22), once we remember
that there are no magnetic charges. But we seem to be missing something in
equation (24) because there is no time derivative. In fact we can prove that
something is missing. Take the divergence of both sides:

~r ¢
³

~r £ ~B
´

= µ0
~r ¢ ~j

The left hand side is zero, because the divergence of a curl is always zero. On
the right hand side, we use the charge conservation relation (5) to get

0 = µ0

µ
¡∂ρ

∂t

¶

which is clearly false if ∂ρ/∂t is not zero. We can see how to fix the problem by
taking the time derivative of equation (21):

1

ε0

∂ρ

∂t
=

∂

∂t

³
~r ¢ ~E

´

Thus if we add a term µ0ε0∂ ~E/∂t we will have a fully self-consistent set of
equations, and a nice symmetry in the two curl equations.

Ampere-Maxwell Law: ~r £ ~B = µ0
~j + µ0ε0

∂ ~E

∂t
(25)

The new term ε0∂ ~E/∂t is called the displacement current. Maxwell was the
first to notice the discrepancy and fix it, and so the law is now named for him
as well as for Ampere.

5.1 Maxwell’s equations in matter

We have already introduced the fields ~D = ε ~E = ε0
~E + ~P and ~H = ~B/µ =

~B
µ0

¡ ~M and showed how they can simplify the static form of Maxwell’s equations
by allowing us to ignore the explicit dependence on bound charges and currents.
We obtained:

~r ¢ ~D = ρf
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while the equivalent magnetic equation needs no change:

~r ¢ ~B = 0

Faraday’s law does not involve charges and currents, so it is also unchanged:

~r £ ~E = ¡∂ ~B

∂t

But Ampere’s law involves change of ~E, which is related to change of bound as
well as free charge.

Recall that
ρb = ¡~r ¢ ~P

If we look at a tiny volume of polarized material, it will have a surface bound
charge density σp = ~P ¢ n̂ at each end. If we now let ~P change a little bit, the
charge on each end also increases a little bit, as if a current flowed from one end
to the other:

Iδt = ~jB ¢ n̂ dAδt = δσbdA = δ ~P ¢ n̂ dA

Thus the "polarization" current is

~jp =
∂ ~P

∂t

This current satisfies the same charge conservation law as regular current:

~r ¢ ~jp = ~r ¢ ∂ ~P

∂t
=

∂

∂t
(¡ρb)

Thus we have four contributions to current:

conduction ("free") current due to moving charges: ~jf

magnetization current: ~jm ag = ~r £ ~M
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polarization current: ~jp =
∂ ~P

∂t

displacement current: ε0
∂ ~E

∂t
Putting all of these into Ampere’s law, we have

~r £ ~B = µ0

Ã
~jf + ~jm ag +~jp + ε0

∂ ~E

∂t

!

= µ0

Ã
~jf + ~r £ ~M +

∂ ~P

∂t
+ ε0

∂ ~E

∂t

!

Now we combine the second term with the LHS and the third term with the
last term, to get:

~r £
Ã

~B

µ0

¡ ~M

!
= ~jf +

∂

∂t

³
~P + ε0

~E
´

~r £ ~H = ~jf +
∂

∂t
~D (26)

5.2 Boundary conditions for time-dependent fields

We do not need to rederive the boundary conditions for the divergence equa-
tions since they have no time-dependent terms. (Remember divergence!tuna-
can!bc for normal component) With n̂ pointing from medium 2 into medium
1, we had ³

~D1 ¡ ~D2

´
¢ n̂ = σf

and
~B ¢ n̂ is continuous

Now we have to look at the curl equations. Once again the rule is curl!rectangle!bc
for tangential components. Starting with Faraday’s law:

Z

recta ng le

³
~r £ ~E

´
¢ N̂dA = ¡

Z
∂ ~B

∂t
¢ N̂dA
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We use Stokes’ theorem on the left, to get

Z

rectangle

~E ¢ d~̀ = ¡
³

~E1 ¡ ~E2

´
¢ t̂` = ¡∂ ~B

∂t
¢ N̂`w

Now as we let w ! 0, the RHS! 0 because ∂ ~B/∂t must remain finite. Thus
we obtain the same relation as before:

³
~E1 ¡ ~E2

´
£ n̂ is continuous

where t̂ = n̂ £ N̂ . Finally we look at the Ampere-Maxwell law:
Z

r ectang le

³
~r £ ~H

´
¢ N̂dA =

Z

rectang le

µ
~jf +

∂

∂t
~D

¶
¢ N̂dA

¡
³

~H1 ¡ ~H2

´
¢ t̂` = `

Z
~jf dw ¢ N̂ ¡ ∂ ~D

∂t
¢ N̂`w

¡
³

~H1 ¡ ~H2

´
¢ t̂ = ~Kf ¢ N̂ ¡ ∂ ~D

∂t
¢ N̂w

where
~Kf =

Z
~jf dw

is the surface free current density, and again the second term on the right ! 0
as w ! 0, since the time derivative must remain finite. Thus

¡
³

~H1 ¡ ~H2

´
¢ t̂ = ~Kf ¢

¡
t̂ £ n̂

¢

= ¡
³

~Kf £ n̂
´

¢ t̂

So, since t̂ is arbitrary,
~H1 ¡ ~H2 = ~Kf £ n̂
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